

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society

Craig T. January, L. Samuel Wann, Joseph S. Alpert, Hugh Calkins, Joseph C. Cleveland, Jr, Joaquin E. Cigarroa, Jamie B. Conti, Patrick T. Ellinor, Michael D. Ezekowitz, Michael E. Field, Katherine T. Murray, Ralph L. Sacco, William G. Stevenson, Patrick J. Tchou, Cynthia M. Tracy and Clyde W. Yancy

Circulation. published online March 28, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/early/2014/03/26/CIR.0000000000000040.citation

Data Supplement (unedited) at:

http://circ.ahajournals.org/content/suppl/2014/03/24/CIR.000000000000000040.DC1.html http://circ.ahajournals.org/content/suppl/2014/03/24/CIR.00000000000000040.DC2.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at: http://circ.ahajournals.org//subscriptions/

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society

Developed in Collaboration With the Society of Thoracic Surgeons

WRITING COMMITTEE MEMBERS*

Craig T. January, MD, PhD, FACC, *Chair* L. Samuel Wann, MD, MACC, FAHA, *Vice Chair**

Joseph S. Alpert, MD, FACC, FAHA*† Michael E. Field, MD, FACC, FHRS†

Hugh Calkins, MD, FACC, FAHA, FHRS*†\$ Katherine T. Murray, MD, FACC, FAHA, FHRS†

Joseph C. Cleveland, Jr, MD, FACC Ralph L. Sacco, MD, FAHA†

Joaquin E. Cigarroa, MD, FACC† William G. Stevenson, MD, FACC, FAHA, FHRS*¶

Jamie B. Conti, MD, FACC, FHRS*† Patrick J. Tchou, MD, FACC‡

Patrick T. Ellinor, MD, PhD, FAHA‡ Cynthia M. Tracy, MD, FACC, FAHA† Michael D. Ezekowitz, MB, ChB, FACC, FAHA*† Clyde W. Yancy, MD, FACC, FAHA†

ACC/AHA TASK FORCE MEMBERS

Jeffrey L. Anderson, MD, FACC, FAHA, *Chair* Jonathan L. Halperin, MD, FACC, FAHA, *Chair-Elect*

Nancy M. Albert, PhD, CCNS, CCRN, FAHA
Biykem Bozkurt, MD, PhD, FACC, FAHA
Ralph G. Brindis, MD, MPH, MACC

E. Magnus Ohman, MD, FACC
E. Magnus Ohman, MD, FACC

Mark A. Creager, MD, FACC, FAHA**

Lesley H. Curtis, PhD

David DeMets, PhD

Susan J. Pressler, PhD, RN, FAHA

Frank W. Sellke, MD, FACC, FAHA

Win-Kuang Shen, MD, FACC, FAHA

Robert A. Guyton, MD, FACC** William G. Stevenson, MD, FACC, FAHA**

Clyde W. Yancy, MD, FACC, FAHA**

†ACC/AHA Representative.

‡Heart Rhythm Society Representative.

§ACC/AHA Task Force on Performance Measures Liaison.

Society of Thoracic Surgeons Representative.

ACC/AHA Task Force on Practice Guidelines Liaison.

This document was approved by the American College of Cardiology Board of Trustees, the American Heart Association Science Advisory and Coordinating Committee, and the Heart Rhythm Society Board of Trustees in March 2014.

The online-only Comprehensive Relationships Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000040/-/DC1.

^{*}Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply; see Appendix 1 for recusal information.

^{**}Former Task Force member during the writing effort.

The American Heart Association requests that this document be cited as follows: January CT, Wann LS, Alpert JS, Calkins H, Cleveland JC, Cigarroa JE, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation. 2014;129:

This article is copublished in Journal of the American College of Cardiology.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.cardiosource.org), the American Heart Association (http://my.americanheart.org), and the Heart Rhythm Society (www.hrsonline.org). A copy of the document is available at http://my.americanheart.org/statements by selecting either the "By Topic" link or the "By Publication Date" link. For copies of this document, please contact the Elsevier Inc. Reprint Department, fax (212) 633-3820, e-mail reprints@elsevier.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the "Policies and Development" link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the "Copyright Permissions Request Form" appears on the right side of the page.

(Circulation. 2014;129:000-000.)

© 2014 by the American Heart Association, Inc., the American College of Cardiology Foundation, and the Heart Rhythm Society.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.00000000000000040

Journal of the American Heart Association

Table of Contents

Preamble	4
1. Introduction	
1.1. Methodology and Evidence Review	8
1.2. Organization of the Writing Committee	8
1.3. Document Review and Approval	8
1.4. Scope of the Guideline	
2. Clinical Characteristics and Evaluation of AF	10
2.1. AF—Classification	10
2.2. Mechanisms of AF and Pathophysiology	11
2.3. Risk Factors and Associated Heart Disease	11
2.4. Clinical Evaluation: Recommendation	12
3. Thromboembolic Risk and Treatment	12
3.1. Risk-Based Antithrombotic Therapy: Recommendations	12
3.2. Risk Stratification Schemes (CHADS ₂ , CHA ₂ DS ₂ -VASc, and HAS-BLED)	15
3.3. Considerations in Selecting Anticoagulants	16
3.4. Cardiac Surgery—LAA Occlusion/Excision: Recommendation	17
4. Rate Control: Recommendations	
5. Rhythm Control	19
5.1. Thromboembolism Prevention: Recommendations	19
5.2. Direct-Current Cardioversion: Recommendations	
5.3. Pharmacological Cardioversion: Recommendations	20
5.4. Antiarrhythmic Drugs to Maintain Sinus Rhythm: Recommendations	21
5.5. Upstream Therapy: Recommendations	23
5.6. AF Catheter Ablation to Maintain Sinus Rhythm: Recommendations	24
5.7. Surgery Maze Procedures: Recommendations	25
6. Specific Patient Groups and AF	25
6.1. Hypertrophic Cardiomyopathy: Recommendations	25
6.2. AF Complicating Acute Coronary Syndrome: Recommendations	26
6.3. Hyperthyroidism: Recommendations	26
6.4. Pulmonary Disease: Recommendations	
6.5. Wolff-Parkinson-White and Pre-Excitation Syndromes: Recommendations	26
6.6. Heart Failure: Recommendations	27
6.7. Familial (Genetic) AF: Recommendation	
6.8. Postoperative Cardiac and Thoracic Surgery: Recommendations	28
7. Evidence Gaps and Future Research Directions	31
Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2014 AHA/ACC/HRS Guideline	for the
Management of Patients With Atrial Fibrillation	33
Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant)—2014 AHA/ACC/HRS Guidelin	ne for the
Management of Patients With Atrial Fibrillation	
Appendix 3. Initial Clinical Evaluation in Patients With AF	
References	48

Preamble

The medical profession should play a central role in evaluating the evidence related to drugs, devices, and procedures for the detection, management, and prevention of disease. When properly applied, expert analysis of available data on the benefits and risks of these therapies and procedures can improve the quality of care, optimize patient outcomes, and favorably affect costs by focusing resources on the most effective strategies. An organized and directed approach to a thorough review of evidence has resulted in the production of clinical practice guidelines that assist clinicians in selecting the best management strategy for an individual patient. Moreover, clinical practice guidelines can provide a foundation for other applications, such as performance measures, appropriate use criteria, and both quality improvement and clinical decision support tools.

The American College of Cardiology (ACC) and the American Heart Association (AHA) have jointly engaged in the production of guidelines in the area of cardiovascular disease since 1980. The ACC/AHA Task Force on Practice Guidelines (Task Force), whose charge is to develop, update, or revise practice guidelines for cardiovascular diseases and procedures, directs this effort. Writing committees are charged with the task of performing an assessment of the evidence and acting as an independent group of authors to develop, update or revise written recommendations for clinical practice.

Experts in the subject under consideration are selected from both organizations to examine subject-specific data and write guidelines. Writing committees are specifically charged to perform a literature review, weigh the strength of evidence for or against particular tests, treatments, or procedure, and include estimates of expected health outcomes where such data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that may influence the choice of tests or therapies are considered, as well as frequency of follow-up and cost effectiveness. When available, information from studies on cost is considered; however, review of data on efficacy and outcomes constitutes the primary basis for preparing recommendations in this guideline.

In analyzing the data, and developing recommendations and supporting text, the writing committee uses evidence-based methodologies developed by the Task Force (1). The Classification of Recommendation (COR) is an estimate of the size of the treatment effect, with consideration given to risks versus benefits, as well as evidence and/or agreement that a given treatment or procedure is or is not useful/effective or in some situations may cause harm; this is defined in Table 1. The Level of Evidence (LOE) is an estimate of the certainty or precision of the treatment effect. The writing committee reviews and ranks evidence supporting each recommendation, with the weight of evidence ranked as LOE A, B, or C, according to specific definitions that are included in Table 1. Studies are identified as observational, retrospective, prospective, or randomized, as appropriate. For certain conditions for which inadequate data are available, recommendations are based on expert consensus and clinical experience and are ranked as LOE C. When recommendations at LOE C are supported by historical clinical data, appropriate references (including clinical reviews) are cited if available. For issues for which sparse data are available, a survey of current practice among the clinician members of the

writing committee is the basis for LOE C recommendations and no references are cited. The schema for COR and LOE is summarized in Table 1, which also provides suggested phrases for writing recommendations within each COR.

A new addition to this methodology is separation of the Class III recommendations to delineate whether the recommendation is determined to be of "no benefit" or is associated with "harm" to the patient. In addition, in view of the increasing number of comparative effectiveness studies, comparator verbs and suggested phrases for writing recommendations for the comparative effectiveness of one treatment or strategy versus another are included for COR I and IIa, LOE A or B only.

In view of the advances in medical therapy across the spectrum of cardiovascular diseases, the Task Force has designated the term *guideline-directed medical therapy* (GDMT) to represent optimal medical therapy as defined by ACC/AHA guideline (primarily Class I)-recommended therapies. This new term, GDMT, is used herein and throughout subsequent guidelines.

Because the ACC/AHA practice guidelines address patient populations (and clinicians) residing in North America, drugs that are not currently available in North America are discussed in the text without a specific COR. For studies performed in large numbers of subjects outside North America, each writing committee reviews the potential impact of different practice patterns and patient populations on the treatment effect and relevance to the ACC/AHA target population to determine whether the findings should inform a specific recommendation.

The ACC/AHA practice guidelines are intended to assist clinicians in clinical decision making by describing a range of generally acceptable approaches to the diagnosis, management, and prevention of specific diseases or conditions. The guidelines attempt to define practices that meet the needs of most patients in most circumstances. The ultimate judgment about care of a particular patient must be made by the clinician and patient in light of all the circumstances presented by that patient. As a result, situations may arise in which deviations from these guidelines may be appropriate. Clinical decision making should involve consideration of the quality and availability of expertise in the area where care is provided. When these guidelines are used as the basis for regulatory or payer decisions, the goal should be improvement in quality of care. The Task Force recognizes that situations arise in which additional data are needed to inform patient care more effectively; these areas are identified within each respective guideline when appropriate.

Prescribed courses of treatment in accordance with these recommendations are effective only if followed. Because lack of patient understanding and adherence may adversely affect outcomes, clinicians should make every effort to engage the patient's active participation in prescribed medical regimens and lifestyles. In addition, patients should be informed of the risks, benefits, and alternatives to a particular treatment and should be involved in shared decision making whenever feasible, particularly for COR IIa and IIb, for which the benefit-to-risk ratio may be lower.

The Task Force makes every effort to avoid actual, potential, or perceived conflicts of interest that may arise as a result of relationships with industry and other entities (RWI) among the members of the writing committee. All writing committee members and peer reviewers of the guideline are required to disclose all current healthcare-related relationships, including those existing 12 months before initiation of the writing effort.

In December 2009, the ACC and AHA implemented a new RWI policy that requires the writing committee chair plus a minimum of 50% of the writing committee to have no relevant RWI (Appendix 1 includes the ACC/AHA definition of relevance). The Task Force and all writing committee members review their respective RWI disclosures during each conference call and/or meeting of the writing committee, and members provide updates to their RWI as changes occur. All guideline recommendations require a confidential vote by the writing committee and require approval by a consensus of the voting members. Members may not draft or vote on any recommendations pertaining to their RWI. Members who recused themselves from voting are indicated in the list of writing committee members, and specific section recusals are noted in Appendix 1. Authors' and peer reviewers' RWI pertinent to this guideline are disclosed in Appendixes 1 and 2. In addition, to ensure complete transparency, writing committee members' comprehensive disclosure information—including RWI not pertinent to this document—is available as an online supplement (http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.000000000000040/-/DC1). Comprehensive disclosure information for the Task Force is also available online at http://www.cardiosource.org/en/ACC/About-ACC/Who-We-Are/Leadership/Guidelines-and-Documents-Task-Forces.aspx. The ACC and AHA exclusively sponsor the work of the writing committee, without commercial support. Writing committee members volunteered their time for this activity. Guidelines are official policy of

both the ACC and AHA.

In an effort to maintain relevance at the point of care for clinicians, the Task Force continues to oversee an ongoing process improvement initiative. As a result, in response to pilot projects, several changes to these guidelines will be apparent, including limited narrative text, a focus on summary and evidence tables (with references linked to abstracts in PubMed), and more liberal use of summary recommendation tables (with references that support LOE) to serve as a quick reference.

In April 2011, the Institute of Medicine released 2 reports: Finding What Works in Health Care: Standards for Systematic Reviews and Clinical Practice Guidelines We Can Trust (2, 3). It is noteworthy that the Institute of Medicine cited ACC/AHA practice guidelines as being compliant with many of the proposed standards. A thorough review of these reports and of our current methodology is under way, with further enhancements anticipated.

The recommendations in this guideline are considered current until they are superseded by a focused update, the full-text guideline is revised, or until a published addendum declares it out of date and no longer

official ACC/AHA policy. The reader is encouraged to consult the full-text guideline (4) for additional guidance and details about atrial fibrillation (AF), since the Executive Summary contains only the recommendations.

SIZE OF TREATMENT EFFECT

CLASS IIb

randomized trial or

nonrandomized studies

■ Recommendation's

well established

standard of care

usefulness/efficacy less

Only diverging expert

opinion, case studies, or

may/might be considered

may/might be reasonable

usefulness/effectiveness is

unknown/unclear/uncertain

CLASS III No Benefit

randomized trial or

be harmful

COR III:

is not

No Benefit

recommended

nonrandomized studies

Recommendation that

procedure or treatment is

not useful/effective and may

■ Only expert opinion, case

studies, or standard of care

COR III:

potentially

harmful

Harm

Jeffrey L. Anderson, MD, FACC, FAHA Chair, ACC/AHA Task Force on Practice Guidelines

CLASS I

Table 1. Applying Classification of Recommendations and Level of Evidence

nonrandomized studies

■ Recommendation that

procedure or treatment is

Only expert opinion, case

studies, or standard of care

is useful/effective/beneficial

useful/effective

is recommended

is indicated

should

CERTAINTY

OF.

STIMATE

LEVEL C

Only consensus opinion

of experts, case studies, or standard of care

Suggested phrases for

writing recommendations

or CLASS III Harm Benefit >>> Risk Benefit >> Risk Benefit > Risk Additional studies with Additional studies with broad Procedure/Treatment focused objectives needed obiectives needed: additional SHOULD be performed/ No Proven Benefit COR III: Not registry data would be helpful administered IT IS REASONABLE to per-No benefit Helpful Procedure/Treatment form procedure/administer Excess Cost Harmful w/o Benefit to Patien COR III: treatment **MAY BE CONSIDERED** or Harmful EFFECT ■ Recommendation that Recommendation in favor ■ Recommendation's LEVEL A Recommendation that procedure or treatment usefulness/efficacy less of treatment or procedure procedure or treatment is Multiple populations is useful/effective being useful/effective well established not useful/effective and may (PRECISION) OF TREATMENT be harmful ■ Sufficient evidence from ■ Some conflicting evidence **■** Greater conflicting Data derived from multiple multiple randomized trials from multiple randomized evidence from multiple ■ Sufficient evidence from randomized clinical trials or meta-analyses trials or meta-analyses randomized trials or multiple randomized trials or or meta-analyses meta-analyses meta-analyses Recommendation in favor LEVEL B Recommendation that Recommendation's ■ Recommendation that procedure or treatment of treatment or procedure usefulness/efficacy less procedure or treatment is **Limited populations** being useful/effective is useful/effective well established not useful/effective and may evaluated* ■ Some conflicting **■** Evidence from single **■** Greater conflicting be harmful Data derived from a randomized trial or evidence from single evidence from single ■ Evidence from single single randomized trial or nonrandomized studies

randomized trial or

nonrandomized studies

■ Recommendation in favor

of treatment or procedure

being useful/effective

Only diverging expert

opinion, case studies,

can be useful/effective/beneficial

is probably recommended

or standard of care

is reasonable

or indicated

CLASS IIa

or not well established is not indicated causes harm should not be associated with performed/ excess morbid-Comparative treatment/strategy A is treatment/strategy A is probably administered/ ity/mortality effectiveness phrases[†] recommended/indicated in recommended/indicated in other should not be preference to treatment B preference to treatment B is not useful/ performed/ treatment A should be chosen it is reasonable to choose beneficial/ administered/ treatment A over treatment B over treatment B effective

A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the guidelines do not lend themselves to clinical trials. Although randomized trials are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

^{*}Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations, such as sex, age, history of diabetes mellitus, history of prior myocardial infarction, history of heart failure, and prior aspirin use. †For comparative-effectiveness recommendations (Class I and IIa; Level of Evidence A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.

1. Introduction

1.1. Methodology and Evidence Review

The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review, focusing on 2006 to the present, was conducted through October 2012, and selected other references through February 2014. The relevant data are included in evidence tables in the Data Supplement available online at (http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.000000000000000040/-/DC2). Searches were extended to studies, reviews, and other evidence conducted in human subjects and that were published in English from PubMed, EMBASE, Cochrane, Agency for Healthcare Research and Quality Reports, and other selected databases relevant to this guideline. Key search words included but were not limited to the following: age, antiarrhythmic, atrial fibrillation, atrial remodeling, atrioventricular conduction, atrioventricular node, cardioversion, classification, clinical trial, complications, concealed conduction, cost-effectiveness, defibrillator, demographics, epidemiology, experimental, heart failure, hemodynamics, human, hyperthyroidism, hypothyroidism, meta-analysis, myocardial infarction, pharmacology, postoperative, pregnancy, pulmonary disease, quality of life, rate control, rhythm control, risks, sinus rhythm, symptoms, and tachycardia-mediated cardiomyopathy. Additionally, the committee reviewed documents related to the subject matter previously published by the ACC and AHA. References selected and published in this document are representative and not all-inclusive.

1.2. Organization of the Writing Committee

The 2014 AF writing committee was composed of clinicians with broad expertise related to AF and its treatment including adult cardiology, electrophysiology, cardiothoracic surgery, and heart failure (HF); and was assisted by staff from the ACC and AHA. Under the guidance of the Task Force, the Heart Rhythm Society was invited to be a partner organization and has provided representation. The writing committee also included a representative from the Society of Thoracic Surgery. The rigorous methodological policies and procedures noted in the Preamble act to differentiate ACC/AHA guidelines from other published guidelines and statements.

1.3. Document Review and Approval

This document was reviewed by 2 official reviewers each nominated by the ACC, the AHA, and the Heart Rhythm Society, as well as 1 reviewer from the Society of Thoracic Surgeons, and 43 individual content reviewers (from the ACC Electrophysiology Committee, Adult Congenital and Pediatric Cardiology Council, Association of International Governors, Heart Failure and Transplant Council, Imaging Council, Interventional Council, Surgeons Council, and the HRS Scientific Documents Committee). All information on reviewers' RWI was distributed to the writing committee and is published in this document (Appendix 2).

This document was approved for publication by the governing bodies of the ACC, AHA, and Heart Rhythm Society, and endorsed by the Society of Thoracic Surgery.

1.4. Scope of the Guideline

The task of the 2014 writing committee was to establish revised guidelines for optimum management of AF. The new guideline incorporates new and existing knowledge derived from published clinical trials, basic science, and comprehensive review articles, along with evolving treatment strategies and new drugs. This guideline supersedes the "2006 ACC/AHA/ESC Guideline for the Management of Patients With Atrial Fibrillation" and the 2 subsequent focused updates from 2011 (5-8). In addition, the ACC/AHA, American College of Physicians, and American Academy of Family Physicians submitted a proposal to the Agency for Healthcare Research and Quality to perform a systematic review on specific questions related to the treatment of AF. The data from that report was reviewed by the writing committee and incorporated where appropriate (9).

The 2014 AF guideline is organized thematically with recommendations, where appropriate, provided with each section. Some recommendations from earlier guidelines have been eliminated, or updated, as warranted by new evidence or a better understanding of earlier evidence. In developing the 2014 AF guideline, the writing committee reviewed prior published guidelines and related statements. Table 2 is a list of these publications and statements deemed pertinent to this effort and is intended for use as a resource.

Table 2. Associated Guidelines and Statements

Title	Organization	Publication Year/ Reference	
Guidelines			
Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC VII)	NHLBI	2003 (10)	
Assessment of Cardiovascular Risk in Asymptomatic Adults	ACCF/AHA	2010 (11)	
Coronary Artery Bypass Graft Surgery	ACCF/AHA	2011 (12)	
Hypertrophic Cardiomyopathy	ACCF/AHA	2011 (13)	
Percutaneous Coronary Intervention	ACCF/AHA/SCAI	2011 (14)	
Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease	AHA/ACCF	2011 (15)	
Atrial Fibrillation*	CCS	2011 (16)	
Atrial Fibrillation	ESC	2012 (17)	
Device-Based Therapy	ACCF/AHA/HRS	2012 (18)	
Stable Ischemic Heart Disease	ACCF/AHA/ACP/ AATS/PCNA/SCAI/STS	2012 (19)	
Antithrombotic Therapy	ACCP	2012 (20)	
Heart Failure	ACCF/AHA	2013 (21)	
ST-Elevation Myocardial Infarction	ACCF/AHA	2013 (22)	
Non–ST-Elevation Acute Coronary Syndromes	ACC/AHA	2014 In Press (23)	
Valvular Heart Disease	AHA/ACC	2014 (24)	
Assessment of Cardiovascular Risk	ACC/AHA	2013 (25)	
Lifestyle Management to Reduce Cardiovascular Risk	AHA/ACC	2013 (26)	
Management of Overweight and Obesity in Adults	AHA/ACC/TOS	2013 (27)	
Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults	ACC/AHA	2013 (28)	
Statements			

Treatment of Atrial Fibrillation	AHRQ	2012 (9)
Oral Antithrombotic Agents for the Prevention of Stroke in	AHA/ASA	2012 (29)
Nonvalvular Atrial Fibrillation: a Science Advisory for		
Healthcare Professionals		
Expert Consensus Statement on Catheter and Surgical	HRS/EHRA/ECAS	2012 (30)
Ablation of Atrial Fibrillation: Recommendations for Patient		
Selection, Procedural Techniques, Patient Management and		
Follow-Up, Definitions, Endpoints, and Research Trial		
Design		

^{*}Includes the following sections: Catheter Ablation for AF/Atrial Flutter, Prevention and Treatment of AF Following Cardiac Surgery; Rate and Rhythm Management, Prevention of Stroke and Systemic Thromboembolism in AF and Flutter; Management of Recent-Onset AF and Flutter in the Emergency Department; Surgical Therapy; The Use of Antiplatelet Therapy in the Outpatient Setting; and Focused 2012 Update of the CCS AF Guidelines: Recommendations for Stroke Prevention and Rate/Rhythm Control.

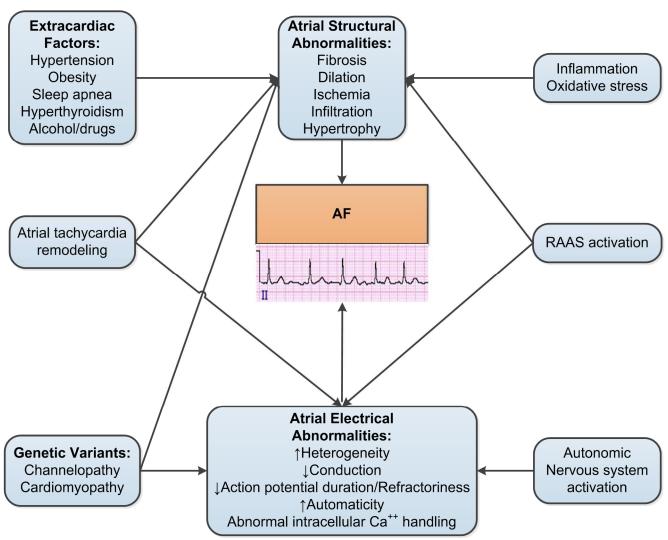
AATS indicates American Association for Thoracic Surgery; ACC, American College of Cardiology; ACCF, American College of Cardiology Foundation; ACP, American College of Physicians; ACCP, American College of Chest Physicians; AHA, American Heart Association; AHRQ, Agency for Healthcare Research and Quality; ASA, American Stroke Association; AF, atrial fibrillation; CCS, Canadian Cardiology Society; ECAS, European Cardiac Arrhythmia Society; EHRA, European Heart Rhythm Association; ESC, European Society of Cardiology; HRS, Heart Rhythm Society; JNC, Joint National Committee; NHLBI, National Heart, Lung, and Blood Institute; PCNA, Preventive Cardiovascular Nurses Association; SCAI, Society for Cardiac Angiography and Interventions; STS, Society of Thoracic Surgeons, and TOS, The Obesity Society.

2. Clinical Characteristics and Evaluation of AF

2.1. AF—Classification

AF may be described by the duration of episodes and a simplified scheme revised from the 2006 AF full-text guideline is given in Table 3 (30, 31). Implanted loop recorders, pacemakers, and defibrillators offer the possibility to report frequency, rate, and duration of abnormal atrial rhythms including AF (32, 33). Episodes often increase in frequency and duration over time.

Table 3. AF Definitions: A Simplified Scheme


Term	Definition
Paroxysmal AF	 AF that terminates spontaneously or with intervention within 7 d of onset. Episodes may recur with variable frequency.
Persistent AF	 Continuous AF that is sustained >7 d.
Longstanding persistent AF	• Continuous AF of >12 mo duration.
Permanent AF	 Permanent AF is used when there has been a joint decision by the patient and clinician to cease further attempts to restore and/or maintain sinus rhythm. Acceptance of AF represents a therapeutic attitude on the part of the patient and clinician rather than an inherent pathophysiological attribute of the AF. Acceptance of AF may change as symptoms, the efficacy of therapeutic interventions, and patient and clinician preferences evolve.
Nonvalvular AF	AF in the absence of rheumatic mitral stenosis, a mechanical or bioprosthetic heart valve, or mitral valve repair.

AF indicates atrial fibrillation.

2.2. Mechanisms of AF and Pathophysiology

AF occurs when structural and/or electrophysiologic abnormalities alter atrial tissue to promote abnormal impulse formation and/or propagation (Figure 1). These abnormalities are caused by diverse pathophysiologic mechanisms (5-8, 30, 34, 35), such that AF represents a final common phenotype for multiple disease pathways and mechanisms that are incompletely understood.

Figure 1. Mechanisms of AF

AF indicates atrial fibrillation; Ca++ ionized calcium; and RAAS, renin-angiotensin-aldosterone system.

2.3. Risk Factors and Associated Heart Disease

Multiple clinical risk factors, electrocardiographic and echocardiographic features, and biochemical makers are associated with an increased risk of AF (Table 4).

Table 4. Selected Risk Factors and Biomarkers for AF

Clinical Risk Factors	References		
Increasing age	(36)		
Hypertension	(36)		
Diabetes mellitus	(36)		
MI	(36)		
VHD	(36)		
HF	(36, 37)		
Obesity	(38-40)		
Obstructive sleep apnea	(40)		
Cardiothoracic surgery	(41)		
Smoking	(42)		
Exercise	(43-45)		
Alcohol use	(46-48)		
Hyperthyroidism	(49-51)		
Increased pulse pressure	(52)		
European ancestry	(53)		
Family history	(54)		
Genetic variants	(55-58)		
Electrocardiographic			
LVH	(59)		
Echocardiographic			
LA enlargement	(59, 60)		
Decreased LV fractional shortening (59)			
Increased LV wall thickness	(59)		
Biomarkers			
Increased CRP	(61, 62)		
Increased BNP	(63, 64)		

AF indicates atrial fibrillation; BNP, B-type natriuretic peptide; CRP, C-reactive protein; HF, heart failure; LA, left atrial; LV, left ventricular; LVH, left ventricular hypertrophy; MI, myocardial infarction; and VHD, valvular heart disease.

2.4. Clinical Evaluation: Recommendation

See Appendix 3 for information on initial clinical evaluation in patients with AF.

Class I

1. Electrocardiographic documentation is recommended to establish the diagnosis of AF. (Level of Evidence: C)

3. Thromboembolic Risk and Treatment

3.1. Risk-Based Antithrombotic Therapy: Recommendations

See Table 5 for a summary of recommendations from this section.

Class I

- 1. In patients with AF, antithrombotic therapy should be individualized based on shared decision-making after discussion of the absolute and RRs of stroke and bleeding, and the patient's values and preferences. (Level of Evidence: C)
- 2. Selection of antithrombotic therapy should be based on the risk of thromboembolism irrespective of whether the AF pattern is paroxysmal, persistent, or permanent (65-68). (Level of Evidence: B)

- 3. In patients with nonvalvular AF, the CHA₂DS₂-VASc score is recommended for assessment of stroke risk (69-71). (*Level of Evidence: B*)
- 4. For patients with AF who have mechanical heart valves, warfarin is recommended and the target international normalized ratio (INR) intensity (2.0 to 3.0 or 2.5 to 3.5) should be based on the type and location of the prosthesis (72-74). (Level of Evidence: B)
- 5. For patients with nonvalvular AF with prior stroke, transient ischemic attack (TIA), or a CHA₂DS₂-VASc score of 2 or greater, oral anticoagulants are recommended. Options include: warfarin (INR 2.0 to 3.0) (69-71) (Level of Evidence: A), dabigatran (75) (Level of Evidence: B), rivaroxaban (76) (Level of Evidence: B), or apixaban (77). (Level of Evidence: B)
- 6. Among patients treated with warfarin, the INR should be determined at least weekly during initiation of antithrombotic therapy and at least monthly when anticoagulation (INR in range) is stable (78-80). (Level of Evidence: A)
- 7. For patients with nonvalvular AF unable to maintain a therapeutic INR level with warfarin, use of a direct thrombin or factor Xa inhibitor (dabigatran, rivaroxaban, or apixaban) is recommended. (Level of Evidence: C)
- 8. Re-evaluation of the need for and choice of antithrombotic therapy at periodic intervals is recommended to reassess stroke and bleeding risks. (Level of Evidence: C)
- 9. Bridging therapy with unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) is recommended for patients with AF and a mechanical heart valve undergoing procedures that require interruption of warfarin. Decisions regarding bridging therapy should balance the risks of stroke and bleeding. (Level of Evidence: C)
- 10. For patients with AF without mechanical heart valves who require interruption of warfarin or newer anticoagulants for procedures, decisions about bridging therapy (LMWH or UFH) should balance the risks of stroke and bleeding and the duration of time a patient will not be anticoagulated. (Level of Evidence: C)
- 11. Renal function should be evaluated prior to initiation of direct thrombin or factor Xa inhibitors and should be re-evaluated when clinically indicated and at least annually (81-83). (Level of Evidence: B)
- 12. For patients with atrial flutter, antithrombotic therapy is recommended according to the same risk profile used for AF. (Level of Evidence: C)

Class IIa JOURNAL OF THE AMERICAN HEART ASSOCIATION

- 1. For patients with nonvalvular AF and a CHA₂DS₂-VASc score of 0, it is reasonable to omit antithrombotic therapy (81, 82). (Level of Evidence: B)
- 2. For patients with nonvalvular AF with a CHA₂DS₂-VASc score of 2 or greater and who have endstage CKD (creatinine clearance [CrCl] <15 mL/min) or are on hemodialysis, it is reasonable to prescribe warfarin (INR 2.0 to 3.0) for oral anticoagulation (83). (Level of Evidence: B)

Class IIb

- 1. For patients with nonvalvular AF and a CHA₂DS₂-VASc score of 1, no antithrombotic therapy or treatment with an oral anticoagulant or aspirin may be considered. (Level of Evidence: C)
- 2. For patients with nonvalvular AF and moderate-to-severe CKD with CHA₂DS₂-VASc scores of 2 or greater, treatment with reduced doses of direct thrombin or factor Xa inhibitors may be considered (e.g., dabigatran, rivaroxaban, or apixaban), but safety and efficacy have not been established. (Level of Evidence: C)
- 3. In patients with AF undergoing percutaneous coronary intervention,* bare-metal stents may be considered to minimize the required duration of dual antiplatelet therapy. Anticoagulation may be interrupted at the time of the procedure to reduce the risk of bleeding at the site of peripheral arterial puncture. (Level of Evidence: C)
- 4. Following coronary revascularization (percutaneous or surgical) in patients with AF and a CHA₂DS₂-VASc score of 2 or greater, it may be reasonable to use clopidogrel (75 mg once daily) concurrently with oral anticoagulants but without aspirin (84). (Level of Evidence: B)

Class III: No Benefit

1. The direct thrombin inhibitor, dabigatran, and the factor Xa inhibitor, rivaroxaban, are not recommended in patients with AF and end-stage CKD or on hemodialysis because of the lack of evidence from clinical trials regarding the balance of risks and benefits (75-77, 85-87). (Level of Evidence: C)

Class III: Harm

1. The direct thrombin inhibitor, dabigatran, should not be used in patients with AF and a mechanical heart valve (88). (Level of Evidence: B)

Table 5. Summary of Recommendations for Prevention of Thromboembolism in Patients With AF

Table 5. Summary of Recommendations for Prevention of Thromboembolism in Patients With AF				
Recommendations	COR	LOE	References	
Antithrombotic therapy based on shared decision-making, discussion of risks of stroke and bleeding, and patient's preferences	I	С	N/A	
Antithrombotic therapy selection based on risk of thromboembolism	I	В	(65-68)	
CHA ₂ DS ₂ -VASc score recommended to assess stroke risk	I	В	(69-71)	
Warfarin recommended with mechanical heart valves. Target INR intensity should be based on the type and location of prosthesis	I	В	(72-74)	
With prior stroke, TIA, or CHA_2DS_2 -VASc score ≥ 2 , oral anticoagulants recommended. Options include:	⊿°.			
Warfarin	I	A	(69-71)	
Dabigatran, rivaroxaban, or apixaban	I	В	(75-77)	
With warfarin, determine INR at least weekly during initiation and monthly when stable	I	A	(78-80)	
Direct thrombin or factor Xa inhibitor recommended, if unable to maintain therapeutic INR	I	С	N/A	
Re-evaluate the need for anticoagulation at periodic intervals	I	С	N/A	
Bridging therapy with LMWH or UFH recommended with a mechanical heart valve if warfarin is interrupted. Bridging therapy should balance risks of stroke and bleeding	I	С	N/A	
Without a mechanical heart valve, bridging therapy decisions should balance stroke and bleeding risks against the duration of time patient will not be anticoagulated	I	С	N/A	
Evaluate renal function prior to initiation of direct thrombin or factor Xa inhibitors, and re-evaluate when clinically indicated and at least annually	I	В	(81-83)	
For atrial flutter, antithrombotic therapy is recommended as for AF	I	С	N/A	
With nonvalvular AF and CHA ₂ DS ₂ -VASc score of 0, it is reasonable to omit antithrombotic therapy	Ha	В	(81, 82)	
With CHA ₂ DS ₂ -VASc score ≥2 and end-stage CKD (CrCl <15 mL/min) or on hemodialysis, it is reasonable to prescribe warfarin for oral anticoagulation	Ha	В	(83)	
With nonvalvular AF and a CHA ₂ DS ₂ -VASc score of 1, no antithrombotic therapy or treatment with an oral anticoagulant or aspirin may be considered	IIb	С	N/A	
With moderate-to-severe CKD and CHA ₂ DS ₂ -VASc scores of ≥2, reduced doses of direct thrombin or factor Xa inhibitors may be considered	IIb	С	N/A	

^{*}See the 2011 percutaneous coronary intervention guideline for type of stent and duration of dual antiplatelet therapy recommendations (14).

For PCI,* BMS may be considered to minimize duration of DAPT	IIb	С	N/A
Following coronary revascularization in patients with CHA_2DS_2 -VASc score of ≥ 2 , it may be reasonable to use clopidogrel concurrently with oral anticoagulants, but without aspirin	IIb	В	(84)
Direct thrombin, dabigatran, and factor Xa inhibitor, rivaroxaban, are not recommended with AF and end-stage CKD or on hemodialysis because of the lack of evidence from clinical trials regarding the balance of risks and benefits	III: No Benefit	С	(75-77, 85- 87)
Direct thrombin inhibitor, dabigatran, should not be used with a mechanical heart valve	III: Harm	В	(88)

^{*}See the 2011 percutaneous coronary intervention guideline for type of stent and duration of dual antiplatelet therapy recommendations (14).

AF indicates atrial fibrillation; BMS, bare-metal stent; CKD, chronic kidney disease; COR, Class of Recommendation; CrCl, creatinine clearance; DAPT, dual antiplatelet therapy; INR, international normalized ratio; LOE, Level of Evidence; LMWH, low-molecular-weight heparin; N/A, not applicable; PCI, percutaneous coronary intervention; TIA, transient ischemic attack; and UFH, unfractionated heparin.

3.2. Risk Stratification Schemes (CHADS2, CHA2DS2-VASc, and HAS-BLED)

One meta-analysis has stratified ischemic stroke risk among patients with nonvalvular AF using either the AF Investigators (89), the Congestive heart failure, Hypertension, Age \geq 75 years, Diabetes mellitus, Prior Stroke or TIA or Thromboembolism (doubled) (CHADS₂) (90), or the Congestive heart failure, Hypertension, Age \geq 75 years (doubled), Diabetes mellitus, Prior Stroke or TIA or thromboembolism (doubled), Vascular disease, Age 65 to 74 years, Sex category (CHA₂DS₂-VASc) point score systems (Table 6) (17).

Table 6. Comparison of the $CHADS_2$ and CHA_2DS_2 -VASc Risk Stratification Scores for Subjects With Nonvalvular AF

Definition and Scores for CHADS ₂ and CHA ₂ DS ₂ - VASc		Stroke Risk Stratific CHA ₂ D
	Score	
CHADS ₂ acronym		CHADS2 acronym*
Congestive HF	1	0
Hypertension	1	1
Age ≥75 y	1	2
Diabetes mellitus	1	3
Stroke/TIA/TE	2	4
Maximum Score	6	5
CHA ₂ DS ₂ -VASc acronym		6
Congestive HF	1	CHA ₂ DS ₂ -VASc acronym
Hypertension	1	0
Age ≥75 y	2	1
Diabetes mellitus	1	2
Stroke/TIA/TE	2	3
Vascular disease (prior MI, PAD, or aortic plaque)	1	4
Age 65–74 y	1	5

Sex category (i.e., female se	x) 1	6
Maximum Score	9	7
		8

6	9.8%
7	9.6%
8	6.7%
9	15.20%

^{*} These adjusted-stroke rates are based on data for hospitalized patients with AF and were published in 2001 (90). Because stroke rates are decreasing, actual stroke rates in contemporary nonhospitalized cohorts might vary from these estimates. †Adjusted-stroke rate scores are based on data from Lip and colleagues (91). Actual rates of stroke in contemporary cohorts might vary from these estimates.

AF indicates atrial fibrillation; CHADS₂, Congestive heart failure, Hypertension, Age \geq 75 years, Diabetes mellitus, Prior Stroke or TIA or Thromboembolism (doubled); CHA₂DS₂-VASc, Congestive heart failure, Hypertension, Age \geq 75 years (doubled), Diabetes mellitus, Prior Stroke or TIA or thromboembolism (doubled), Vascular disease, Age 65–74 years, Sex category; HF, heart failure; LV, left ventricular; MI, myocardial infarction; PAD, peripheral artery disease; TE, thromboembolic; and TIA, transient ischemic attack (91, 92).

3.3. Considerations in Selecting Anticoagulants

For patients with CKD, dose modifications of the new agents are available (Table 7); however, for those with severe or end-stage CKD, warfarin remains the anticoagulant of choice, as there are no or very limited data for these patients. Among patients on hemodialysis, warfarin has been used with acceptable risks of hemorrhage (83).

Table 7. Dose Selection of Oral Anticoagulant Options for Patients with Nonvalvular AF and CKD (Based on Prescribing Information for the United States)*

Renal Function	Warfarin (93)	Dabigatran† (75)	Rivaroxaban† (76)	Apixaban† (77)
Normal/Mild	Dose adjusted for INR	150 mg BID	20 mg HS	5.0 or 2.5 mg BID‡
Impairment	2.0–3.0	(CrCl >30 mL/min)	(CrCl >50 mL/min)	
Louis I and	DNAL OF THE	AMERICAN MI	CART ACCOCIA	TION
Moderate	Dose adjusted for INR	150 mg BID or 75 mg	15 mg HS	5.0 or 2.5 mg BID‡
Impairment	2.0-3.0	BID§	(CrCl 30–50 mL/min)	
		(CrCl >30 mL/min)		
Severe Impairment	Dose adjusted for INR	75 mg BID§	15 mg HS	No recommendation,
	2.0–3.0	(CrCl 15–30 mL/min)	(CrCl 15–30 mL/min)	See section 4.2.2.2.¶
End-Stage CKD Not	Dose adjusted for INR	Not recommended¶	Not recommended¶	No recommendation,
on Dialysis	2.0–3.0	(CrCl <15 mL/min)	(CrCl <15 mL/min)	See section 4.2.2.2.¶
End-Stage CKD on	Dose adjusted for INR	Not recommended¶	Not recommended¶	No recommendation,
Dialysis	2.0–3.0	(CrCl <15 mL/min)	(CrCl <15 mL/min)	See section 4.2.2.2.¶#

^{*}Renal function should be evaluated prior to initiation of direct thrombin or factor Xa inhibitors and should be reevaluated when clinically indicated and at least annually. CrCl should be measured using the Crockoft-Gault method.

[†]The concomitant use of P-glycoprotein inducers or inhibitors with dabigatran, or the concomitant use of dual P-glycoprotein and strong *CYP3A4* inducers or inhibitors with either rivaroxaban or apixaban, particularly in the setting of CKD, may require dosing adjustment or avoidance of concomitant drug use (see the FDA drug label at http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/202155s002lbl.pdf; Section 8.6).

[‡]Use apixaban 2.5 mg BID if any 2 patient characteristics present: $Cr \ge 1.5$ mg/dL, ≥ 80 years of age, body weight ≤ 60 kg (77). Apixaban is not recommended in patients with severe hepatic impairment.

[§]Modeling studies suggest that dabigatran 75 mg BID might be safe for patients with CrCl 15–30mL/min, but this has not been validated in a prospective cohort. Some countries outside the United States use 110 mg BID (75).

Dose-adjusted warfarin has been used, but observational data regarding safety and efficacy are conflicting.

No published studies support a dose for this level of renal function.

#In patients with end-stage CKD on stable hemodialysis, prescribing information indicates the use of apixaban 5 mg BID with dose reduction to 2.5 mg BID if the patient is either \geq 80 years of age or body weight \leq 60 kg.

AF indicates atrial fibrillation; BID, twice daily; CKD, chronic kidney disease; Cr, creatinine; CrCl, creatinine clearance; HS, once daily in evening with food; and INR, international normalized ratio.

3.4. Cardiac Surgery—LAA Occlusion/Excision: Recommendation

Class IIb

1. Surgical excision of the LAA may be considered in patients undergoing cardiac surgery. (Level of Evidence: C)

4. Rate Control: Recommendations

See Table 8 for a summary of recommendations for this section and Table 9 for AF rate control common medication dosages.

Class I

- 1. Control of the ventricular rate using a beta blocker or nondihydropyridine calcium channel antagonist is recommended for patients with paroxysmal, persistent, or permanent AF (94-96). (Level of Evidence: B)
- 2. Intravenous administration of a beta blocker or nondihydropyridine calcium channel blocker is recommended to slow the ventricular heart rate in the acute setting in patients without pre-excitation. In hemodynamically unstable patients, electrical cardioversion is indicated (97-100). (Level of Evidence: B)
- 3. In patients who experience AF-related symptoms during activity, the adequacy of heart rate control should be assessed during exertion, adjusting pharmacological treatment as necessary to keep the ventricular rate within the physiological range. (Level of Evidence: C)

Class IIa

- 1. A heart rate control (resting heart rate <80 bpm) strategy is reasonable for symptomatic management of AF (96, 101). (Level of Evidence: B)
- 2. Intravenous amiodarone can be useful for rate control in critically ill patients without preexcitation (102-104). (Level of Evidence: B)
- 3. AV nodal ablation with permanent ventricular pacing is reasonable to control the heart rate when pharmacological therapy is inadequate and rhythm control is not achievable (105-107). (Level of Evidence: B)

Class IIb

- 1. A lenient rate-control strategy (resting heart rate <110 bpm) may be reasonable as long as patients remain asymptomatic and LV systolic function is preserved (101). (Level of Evidence: B)
- 2. Oral amiodarone may be useful for ventricular rate control when other measures are unsuccessful or contraindicated. (Level of Evidence: C)

Class III: Harm

- 1. AV nodal ablation with permanent ventricular pacing should not be performed to improve rate control without prior attempts to achieve rate control with medications. (Level of Evidence: C)
- 2. Nondihydropyridine calcium channel antagonists should not be used in patients with decompensated HF as these may lead to further hemodynamic compromise. (Level of Evidence: C)
- 3. In patients with pre-excitation and AF, digoxin, nondihydropyridine calcium channel antagonists, or intravenous amiodarone should not be administered as they may increase the ventricular response and may result in ventricular fibrillation (108). (Level of Evidence: B)

4. Dronedarone should not be used to control the ventricular rate in patients with permanent AF as it increases the risk of the combined endpoint of stroke, MI, systemic embolism, or cardiovascular death (109, 110). (Level of Evidence: B)

Table 8. Summary of Recommendations for Rate Control

Recommendations	COR	LOE	References
Control ventricular rate using a beta blocker or nondihydropyridine calcium channel antagonist for paroxysmal, persistent, or permanent AF	I	В	(94-96)
IV beta blockers or nondihydropyridine calcium channel blocker recommended to slow ventricular heart rate in the acute setting in patients without pre-excitation. In hemodynamically unstable patients, electrical cardioversion is indicated	I	В	(97-100)
For AF, assess heart rate control during exertion, adjusting pharmacological treatment as necessary	I	C	N/A
A heart rate control (resting heart rate <80 bpm) strategy is reasonable for symptomatic management of AF	IIa	В	(96, 101)
IV amiodarone can be useful for rate control in critically ill patients without pre-excitation	IIa	В	(102-104)
AV nodal ablation with permanent ventricular pacing is reasonable when pharmacological management is inadequate and rhythm control is not achievable	IIa	В	(105-107)
Lenient rate control strategy (resting heart rate <110 bpm) may be reasonable with asymptomatic patients and LV systolic function is preserved	IIb	В	(101)
Oral amiodarone may be useful for ventricular rate control when other measures are unsuccessful or contraindicated	IIb	С	N/A
AV nodal ablation should not be performed without prior attempts to achieve rate control with medications	III: Harm	С	N/A
Nondihydropyridine calcium channel antagonists should not be used in decompensated HF	III: Harm	С	N/A
With pre-excitation and AF, digoxin, nondihydropyridine calcium channel antagonists, or amiodarone, should not be administered	III: Harm	В	(108)
Dronedarone should not be used to control ventricular rate with permanent AF	III: Harm	В	(109, 110)

AF indicates atrial fibrillation; AV, atrioventricular; COR, Class of Recommendation; HF, heart failure; IV, intravenous; LOE, Level of Evidence; LV, left ventricular; and N/A, not applicable.

Table 9. AF Rate Control Common Medication Dosage

	Intravenous Administration	Usual Oral Maintenance Dose
Beta blockers		
Metoprolol tartrate	2.5–5.0 mg IV bolus over 2 min; up to 3 doses	25–100 mg BID
Metoprolol XL (succinate)	N/A	50–400 mg QD
Atenolol	N/A	25–100 mg QD
Esmolol	500 mcg/kg IV bolus over 1 min, then 50–300 mcg/kg/min IV	N/A
Propranolol	1 mg IV over 1 min, up to 3 doses at 2 min intervals	10–40 mg TID or QID
Nadolol	N/A	10–240 mg QD

Carvedilol	N/A	3.125–25 mg BID				
Bisoprolol	N/A	2.5–10 mg QD				
Nondihydropyridine calcium channel antagonists						
Verapamil	(0.075-0.15 mg/kg) IV bolus over 2 min, may give an additional 10.0 mg after 30 min if no response, then 0.005 mg/kg/min infusion	180–480 mg QD (ER)				
Diltiazem	0.25 mg/kg IV bolus over 2 min, then 5-15 mg/h	120–360 mg QD (ER)				
Digitalis glycoside	es					
Digoxin	0.25 mg IV with repeat dosing to a maximum of 1.5 mg over 24 h	0.125–0.25 mg QD				
Others						
Amiodarone	300 mg IV over 1 h, then 10–50 mg/h over 24 h	100–200 mg QD				

AF indicates atrial fibrillation; BID, twice daily; ER, extended release; IV, intravenous; N/A, not applicable; QD, once daily; QID, four times a day; and TID, three times a day.

5. Rhythm Control

See Table 10 for a summary of recommendations from this section.

5.1. Thromboembolism Prevention: Recommendations

Class I

- 1. For patients with AF or atrial flutter of 48-hour duration or longer, or when the duration of AF is unknown, anticoagulation with warfarin (INR 2.0 to 3.0) is recommended for at least 3 weeks prior to and 4 weeks after cardioversion, regardless of the CHA₂DS₂-VASc score and the method (electrical or pharmacological) used to restore sinus rhythm (111-114). (Level of Evidence: B)
- 2. For patients with AF or atrial flutter of more than 48 hours or unknown duration that requires immediate cardioversion for hemodynamic instability, anticoagulation should be initiated as soon as possible and continued for at least 4 weeks after cardioversion unless contraindicated. (Level of Evidence: C)
- 3. For patients with AF or atrial flutter of less than 48-hour duration and with high risk of stroke, intravenous heparin or LMWH, or administration of a factor Xa or direct thrombin inhibitor, is recommended as soon as possible before or immediately after cardioversion, followed by long-term anticoagulation therapy. (Level of Evidence: C)
- 4. Following cardioversion for AF of any duration, the decision regarding long-term anticoagulation therapy should be based on the thromboembolic risk profile (Section 4). (Level of Evidence: C)

Class IIa

- 1. For patients with AF or atrial flutter of 48-hour duration or longer or of unknown duration who have not been anticoagulated for the preceding 3 weeks, it is reasonable to perform a TEE prior to cardioversion and proceed with cardioversion if no LA thrombus is identified, including in the LAA, provided that anticoagulation is achieved before TEE and maintained after cardioversion for at least 4 weeks (115). (Level of Evidence: B)
- 2. For patients with AF or atrial flutter of 48-hour duration or longer, or when the duration of AF is unknown, anticoagulation with dabigatran, rivaroxaban, or apixaban is reasonable for at least 3 weeks prior to and 4 weeks after cardioversion (116-118). (Level of Evidence: C)

Class IIb

1. For patients with AF or atrial flutter of less than 48-hour duration who are at low thromboembolic risk, anticoagulation (intravenous heparin, LMWH, or a new oral anticoagulant)

or no antithrombotic therapy may be considered for cardioversion, without the need for postcardioversion oral anticoagulation (119). (Level of Evidence: C)

5.2. Direct-Current Cardioversion: Recommendations

Class I

- 1. In pursuing a rhythm-control strategy, cardioversion is recommended for patients with AF or atrial flutter as a method to restore sinus rhythm. If cardioversion is unsuccessful, repeated direct-current cardioversion attempts may be made after adjusting the location of the electrodes or applying pressure over the electrodes, or following administration of an antiarrhythmic medication (120). (Level of Evidence: B)
- 2. Cardioversion is recommended when a rapid ventricular response to AF or atrial flutter does not respond promptly to pharmacological therapies and contributes to ongoing myocardial ischemia, hypotension, or HF. (Level of Evidence: C)
- 3. Cardioversion is recommended for patients with AF or atrial flutter and pre-excitation when tachycardia is associated with hemodynamic instability. (Level of Evidence: C)

Class IIa

1. It is reasonable to perform repeated cardioversions in patients with persistent AF provided that sinus rhythm can be maintained for a clinically meaningful period between cardioversion procedures. Severity of AF symptoms and patient preference should be considered when embarking on a strategy requiring serial cardioversion procedures. (Level of Evidence: C)

5.3. Pharmacological Cardioversion: Recommendations

Class I

1. Flecainide, dofetilide, propafenone, and intravenous ibutilide are useful for pharmacological cardioversion of AF or atrial flutter provided contraindications to the selected drug are absent (121-126). (Level of Evidence: A)

Class IIa

- 1. Administration of oral amiodarone is a reasonable option for pharmacological cardioversion of AF (127, 128). (Level of Evidence: A)
- 2. Propafenone or flecainide ("pill-in-the-pocket") in addition to a beta blocker or nondihydropyridine calcium channel antagonist is reasonable to terminate AF outside the hospital once this treatment has been observed to be safe in a monitored setting for selected patients (121). (Level of Evidence: B)

Class III: Harm

1. Dofetilide therapy should not be initiated out of hospital owing to the risk of excessive QT prolongation that can cause torsades de pointes (125, 129). (Level of Evidence: B)

Table 10. Summary of Recommendations for Electrical and Pharmacological Cardioversion of AF and Atrial Flutter

Recommendations	COR	LOE	References
Thromboembolism prevention			
With AF or atrial flutter for ≥48 h, or unknown duration, anticoagulate with warfarin for at least 3 wk prior to and 4 wk after cardioversion	I	В	(111-114)
With AF or atrial flutter for >48 h or unknown duration requiring immediate cardioversion, anticoagulate as soon as possible and continue for at least 4 wk	I	С	N/A
With AF or atrial flutter <48 h and high stroke risk, IV heparin or LMWH,	I	С	N/A

or factor Xa or direct thrombin inhibitor, is recommended before or immediately after cardioversion, followed by long-term anticoagulation			
Following cardioversion of AF, long-term anticoagulation should be based			
on thromboembolic risk	I	С	N/A
With AF or atrial flutter for ≥48 h or unknown duration and no			
anticoagulation for preceding 3 wk, it is reasonable to perform a TEE prior			
to cardioversion, and then cardiovert if no LA thrombus is identified,	IIa	В	(115)
provided anticoagulation is achieved before TEE and maintained after			, ,
cardioversion for at least 4 wk			
With AF or atrial flutter ≥48 h, or unknown duration, anticoagulation with			
dabigatran, rivaroxaban, or apixaban is reasonable for ≥3 wk prior to and 4	IIa	C	(116-118)
wk after cardioversion			
With AF or atrial flutter <48 h and low thromboembolic risk, IV heparin,			
LMWH, a new oral anticoagulant, or no antithrombotic may be considered	IIb	С	(119)
for cardioversion			
Direct-current cardioversion			
Cardioversion is recommended for AF or atrial flutter to restore sinus	I	В	(120)
rhythm. If unsuccessful, repeat cardioversion attempts may be made	1	D	(120)
Cardioversion is recommended for AF or atrial flutter with RVR, that does		С	NT/A
not respond to pharmacological therapies	1	C	N/A
Cardioversion is recommended for AF or atrial flutter and pre-excitation	I	С	N/A
with hemodynamic instability		C	IV/A
It is reasonable to repeat cardioversions in persistent AF when sinus rhythm	IIa	С	N/A
is maintained for a clinically meaningful time period between procedures	Ha	C	IN/A
Pharmacological cardioversion			
Flecainide, dofetilide, propafenone, and IV ibutilide are useful for			
cardioversion of AF or atrial flutter provided contraindications to the	I	A	(121-126)
selected drug are absent			
Amiodarone is reasonable for pharmacological cardioversion of AF	IIa	A	(127, 128)
Propafenone or flecainide ("pill-in-the-pocket") to terminate AF out of	IIa	В	(121)
hospital is reasonable once observed to be safe in a monitored setting	Πα	Б	(121)
Dofetilide should not be initiated out of hospital	III: Harm	В	(125, 129)
AT' 1' A A' 1 C' 1 'II A' COD CI AD 1 A' MA' A		LIOPI	1 CE 11

AF indicates atrial fibrillation; COR, Class of Recommendation; IV, intravenous; LA, left atrial; LOE, Level of Evidence; LMWH, low-molecular-weight heparin; N/A, not applicable; RVR, rapid ventricular response; and TEE, transesophageal echocardiogram.

5.4. Antiarrhythmic Drugs to Maintain Sinus Rhythm: Recommendations

Class I

- 1. Before initiating antiarrhythmic drug therapy, treatment of precipitating or reversible causes of AF is recommended. (Level of Evidence: C)
- 2. The following antiarrhythmic drugs are recommended in patients with AF to maintain sinus rhythm, depending on underlying heart disease and comorbidities (*Level of Evidence: A*):
 - **a.** Amiodarone (130-133)
 - b. Dofetilide (125, 129)
 - **c. Dronedarone** (134-136)
 - d. Flecainide (131, 137)
 - e. Propafenone (131, 138-141)
 - f. Sotalol (131, 139, 142)
- 3. The risks of the antiarrhythmic drug, including proarrhythmia, should be considered before initiating therapy with each drug. (Level of Evidence: C)
- 4. Owing to its potential toxicities, amiodarone should only be used after consideration of risks and when other agents have failed or are contraindicated. (130, 138, 143-146). (Level of Evidence: C)

Class IIa

1. A rhythm-control strategy with pharmacological therapy can be useful in patients with AF for the treatment of tachycardia-induced cardiomyopathy. (Level of Evidence: C)

Class IIb

1. It may be reasonable to continue current antiarrhythmic drug therapy in the setting of infrequent, well-tolerated recurrences of AF, when the drug has reduced the frequency or symptoms of AF. (Level of Evidence: C)

Class III: Harm

- 1. Antiarrhythmic drugs for rhythm control should not be continued when AF becomes permanent (Level of Evidence: C) including dronedarone (109). (Level of Evidence: B)
- 2. Dronedarone should not be used for treatment of AF in patients with New York Heart Association (NYHA) class III and IV HF or patients who have had an episode of decompensated HF in the past 4 weeks (110). (Level of Evidence: B)

Table 11 summarizes antiarrhythmic drugs useful in the maintenance of sinus rhythm along with toxicity profiles.

Table 11. Dosage and Safety Considerations for Maintenance of Sinus Rhythm in AF

Drug	Usual Doses	Exclude/Use with Caution	Major Pharmacokinetic Drug Interactions			
Vaughan Williams	Class IA	Cuuton	THE CHOIS			
Disopyramide	 Immediate release: 100–200 mg once every 6 h Extended release: 200–400 mg once every 12 h 	 HF Prolonged QT interval Prostatism, glaucoma Avoid other QT interval-prolonging drugs 	Metabolized by <i>CYP3A4</i> : caution with inhibitors (e.g., verapamil, diltiazem, ketoconazole, macrolide antibiotics, protease inhibitors, grapefruit juice) and inducers (e.g., rifampin, phenobarbital, phenytoin)			
Quinidine	• 324–648 mg every 8 h	Prolonged QT intervalDiarrhea	 Inhibits CYP2D6: ↑concentrations of tricyclic antidepressants, metoprolol, antipsychotics; ↓efficacy of codeine Inhibits P-glycoprotein: ↑digoxin concentration 			
Vaughan Williams						
Flecainide	• 50–200 mg once every 12 h	 Sinus or AV node dysfunction HF CAD Atrial flutter Infranodal conduction disease Brugada syndrome Renal or liver disease 	• Metabolized by CYP2D6 (inhibitors include quinidine, fluoxetine, tricyclics; also genetically absent in 7%−10% of population) and renal excretion (dual impairment can ↑↑plasma concentration)			
Propafenone	 Immediate release: 150–300 mg once every 8 h Extended release: 225–425 mg once every 12 h 	 Sinus or AV node dysfunction HF CAD Atrial flutter 	Metabolized by CYP2D6 (inhibitors include quinidine, fluoxetine, tricyclics; also genetically absent in 7%–10% of population)—poor metabolizers			

Vaughan Williams (Amiodarone	Oral: 400–600 mg daily in divided doses for 2-4 wk; maintenance typically 100-200 mg QD IV: 150 mg over 10 min; then 1 mg/min for 6 h; then 0.5 mg/min for 18 h or change to oral dosing; after 24 h, consider decreasing dose to 0.25 mg/min	 Infranodal conduction disease Brugada syndrome Liver disease Asthma Sinus or AV node dysfunction Infranodal conduction disease Lung disease Prolonged QT interval 	 have ↑beta blockade Inhibits P-glycoprotein: ↑digoxin concentration Inhibits CYP2C9: ↑warfarin concentration (↑INR 25%) Inhibits most CYPs to cause drug interaction: ↑concentrations of warfarin (↑INR 0%–200%), statins, many other drugs Inhibits P-glycoprotein: ↑digoxin concentration
Dofetilide	• 125–500 mcg once every 12 h	 Prolonged QT interval Renal disease Hypokalemia Diuretic therapy Avoid other QT interval prolonging drugs 	Metabolized by CYP3A: verapamil, HCTZ, cimetidine, ketoconazole, trimethoprim, prochlorperazine, and megestrol are contraindicated; discontinue amiodarone at least 3 mo before initiation
Dronedarone	400 mg once every 12 h URNAL OF THE AME	 Bradycardia HF Long-standing persistent AF/flutter Liver disease Prolonged QT interval 	 Metabolized by CYP3A: caution with inhibitors (e.g., verapamil, diltiazem, ketoconazole, macrolide antibiotics, protease inhibitors, grapefruit juice) and inducers (e.g., rifampin, phenobarbital, phenytoin) Inhibits CYP3A, CYP2D6, Pglycoprotein: ↑concentrations of some statins, sirolimus, tacrolimus, beta blockers, digoxin
Sotalol A F indicates strial file	40–160 mg once every 12 h villation: AV atriovantrioular: CA	 Prolonged QT interval Renal disease Hypokalemia Diuretic therapy Avoid other QT interval prolonging drugs Sinus or AV nodal dysfunction HF Asthma 	None (renal excretion) CTCZ bydgeoblogothicside, IEE Heart

AF indicates atrial fibrillation; AV, atrioventricular; CAD, coronary artery disease; HCTZ, hydrochlorothiazide; HF, Heart Failure; INR, international normalized ratio; IV, intravenous; and QD, once daily. Adapted from Brunton et al. (147).

5.5. Upstream Therapy: Recommendations

Class IIa

1. An ACE inhibitor or angiotensin-receptor blocker (ARB) is reasonable for primary prevention of new-onset AF in patients with HF with reduced LVEF (148-150). (Level of Evidence: B)

Class IIb

- 1. Therapy with an ACE inhibitor or ARB may be considered for primary prevention of new-onset AF in the setting of hypertension (34, 151). (Level of Evidence: B)
- 2. Statin therapy may be reasonable for primary prevention of new-onset AF after coronary artery surgery (152, 153). (Level of Evidence: A)

Class III: No Benefit

1. Therapy with an ACE inhibitor, ARB, or statin is not beneficial for primary prevention of AF in patients without cardiovascular disease (34, 154). (Level of Evidence: B)

5.6. AF Catheter Ablation to Maintain Sinus Rhythm: Recommendations

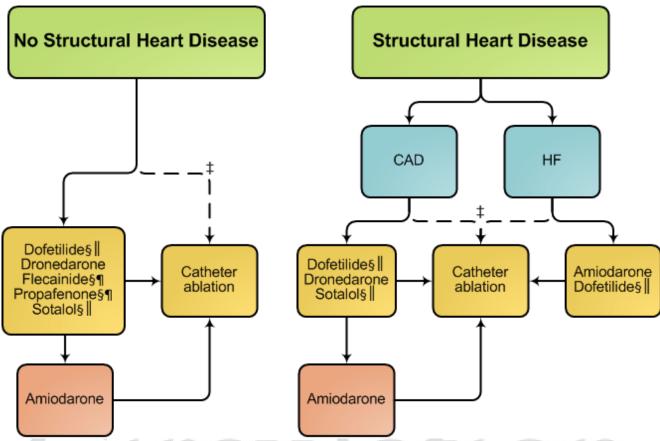
Class I

- 1. AF catheter ablation is useful for symptomatic paroxysmal AF refractory or intolerant to at least 1 class I or III antiarrhythmic medication when a rhythm control strategy is desired (155-161). (Level of Evidence: A)
- 2. Prior to consideration of AF catheter ablation, assessment of the procedural risks and outcomes relevant to the individual patient is recommended. (Level of Evidence: C)

Class IIa

- 1. AF catheter ablation is reasonable for selected patients with symptomatic persistent AF refractory or intolerant to at least 1 class I or III antiarrhythmic medication (158, 162-164). (Level of Evidence: A)
- 2. In patients with recurrent symptomatic paroxysmal AF, catheter ablation is a reasonable initial rhythm control strategy prior to therapeutic trials of antiarrhythmic drug therapy, after weighing risks and outcomes of drug and ablation therapy (165-167). (Level of Evidence: B)

Class IIb


- 1. AF catheter ablation may be considered for symptomatic long-standing (>12 months) persistent AF refractory or intolerant to at least 1 class I or III antiarrhythmic medication, when a rhythm control strategy is desired (155, 168). (Level of Evidence: B)
- 2. AF catheter ablation may be considered prior to initiation of antiarrhythmic drug therapy with a class I or III antiarrhythmic medication for symptomatic persistent AF, when a rhythm control strategy is desired. (Level of Evidence: C)

Class III: Harm

- 1. AF catheter ablation should not be performed in patients who cannot be treated with anticoagulant therapy during and following the procedure. (Level of Evidence: C)
- 2. AF catheter ablation to restore sinus rhythm should not be performed with the sole intent of obviating the need for anticoagulation. (Level of Evidence: C)

Figure 2 shows an approach to the integration of antiarrhythmic drugs and catheter ablation of AF in patients without and with structural heart disease.

Figure 2. Strategies for Rhythm Control in Patients with Paroxysmal* and Persistent AF†

^{*}Catheter ablation is only recommended as first-line therapy for patients with paroxysmal AF (Class IIa recommendation). †Drugs are listed alphabetically.

5.7. Surgery Maze Procedures: Recommendations

Class IIa

1. An AF surgical ablation procedure is reasonable for selected patients with AF undergoing cardiac surgery for other indications. (Level of Evidence: C)

Class IIb

1. A stand-alone AF surgical ablation procedure may be reasonable for selected patients with highly symptomatic AF not well managed with other approaches (169). (Level of Evidence: B)

6. Specific Patient Groups and AF

See Table 12 for a summary of recommendations for this section.

6.1. Hypertrophic Cardiomyopathy: Recommendations

Class I

[‡]Depending on patient preference when performed in experienced centers.

[§]Not recommended with severe LVH (wall thickness >1.5 cm).

Should be used with caution in patients at risk for torsades de pointes ventricular tachycardia.

Should be combined with AV nodal blocking agents.

AF indicates atrial fibrillation; CAD, coronary artery disease; HF, heart failure; and LVH, left ventricular hypertrophy.

1. Anticoagulation is indicated in patients with HCM with AF independent of the CHA₂DS₂-VASc score (170, 171). (*Level of Evidence: B*)

Class IIa

- 1. Antiarrhythmic medications can be useful to prevent recurrent AF in patients with HCM. Amiodarone, or disopyramide combined with a beta blocker or nondihydropyridine calcium channel antagonists are reasonable therapies. (Level of Evidence: C)
- 2. AF catheter ablation can be beneficial in patients with HCM in whom a rhythm-control strategy is desired when antiarrhythmic drugs fail or are not tolerated (172-175). (Level of Evidence: B)

Class IIb

1. Sotalol, dofetilide, and dronedarone may be considered for a rhythm-control strategy in patients with HCM (13). (Level of Evidence: C)

6.2. AF Complicating Acute Coronary Syndrome: Recommendations

Class I

- 1. Urgent direct-current cardioversion of new-onset AF in the setting of ACS is recommended for patients with hemodynamic compromise, ongoing ischemia, or inadequate rate control. (Level of Evidence: C)
- 2. Intravenous beta blockers are recommended to slow a rapid ventricular response to AF in patients with ACS who do not display HF, hemodynamic instability, or bronchospasm. (Level of Evidence: C)
- 3. For patients with ACS and AF with CHA₂DS₂-VASc score of 2 or greater, anticoagulation with warfarin is recommended unless contraindicated. (*Level of Evidence: C*)

Class IIb

- 1. Administration of amiodarone or digoxin may be considered to slow a rapid ventricular response in patients with ACS and AF associated with severe LV dysfunction and HF or hemodynamic instability. (Level of Evidence: C)
- 2. Administration of nondihydropyridine calcium antagonists might be considered to slow a rapid ventricular response in patients with ACS and AF only in the absence of significant HF or hemodynamic instability. (Level of Evidence: C)

6.3. Hyperthyroidism: Recommendations

Class I

- 1. Beta blockers are recommended to control ventricular rate in patients with AF complicating thyrotoxicosis unless contraindicated. (Level of Evidence: C)
- 2. In circumstances in which a beta blocker cannot be used, a nondihydropyridine calcium channel antagonist is recommended to control the ventricular rate. (Level of Evidence: C)

6.4. Pulmonary Disease: Recommendations

Class I

- 1. A nondihydropyridine calcium channel antagonist is recommended to control the ventricular rate in patients with AF and chronic obstructive pulmonary disease. (Level of Evidence: C)
- 2. Direct-current cardioversion should be attempted in patients with pulmonary disease who become hemodynamically unstable as a consequence of new onset AF. (Level of Evidence: C)

6.5. Wolff-Parkinson-White and Pre-Excitation Syndromes: Recommendations

Class I

- 1. Prompt direct-current cardioversion is recommended for patients with AF, WPW, and rapid ventricular response who are hemodynamically compromised (176). (Level of Evidence: C)
- 2. Intravenous procainamide or ibutilide to restore sinus rhythm or slow the ventricular rate is recommended for patients with pre-excited AF and rapid ventricular response who are not hemodynamically compromised (176). (Level of Evidence: C)
- 3. Catheter ablation of the accessory pathway is recommended in symptomatic patients with preexcited AF, especially if the accessory pathway has a short refractory period that allows rapid antegrade conduction (176). (Level of Evidence: C)

Class III: Harm

1. Administration of intravenous amiodarone, adenosine, digoxin (oral or intravenous), or nondihydropyridine calcium channel antagonists (oral or intravenous) in patients with WPW syndrome who have pre-excited AF is potentially harmful as these treatments accelerate the ventricular rate (177-179). (Level of Evidence: B)

6.6. Heart Failure: Recommendations

Class I

- 1. Control of resting heart rate using either a beta blocker or a nondihydropyridine calcium channel antagonist is recommended for patients with persistent or permanent AF and compensated HF with preserved EF (HFpEF) (96). (Level of Evidence: B)
- 2. In the absence of pre-excitation, intravenous beta blocker administration (or a nondihydropyridine calcium channel antagonist in patients with HFpEF) is recommended to slow the ventricular response to AF in the acute setting, with caution needed in patients with overt congestion, hypotension, or HF with reduced LVEF (180-183). (Level of Evidence: B)
- 3. In the absence of pre-excitation, intravenous digoxin or amiodarone is recommended to control heart rate acutely in patients with HF (104, 181, 184, 185). (Level of Evidence: B)
- 4. Assessment of heart rate control during exercise and adjustment of pharmacological treatment to keep the rate in the physiological range is useful in symptomatic patients during activity. (Level of Evidence: C)
- 5. Digoxin is effective to control resting heart rate in patients with HF with reduced EF. (Level of Evidence: C)

Class IIa

- 1. A combination of digoxin and a beta blocker (or a nondihydropyridine calcium channel antagonist for patients with HFpEF), is reasonable to control resting and exercise heart rate in patients with AF (94, 181). (Level of Evidence: B)
- 2. It is reasonable to perform AV node ablation with ventricular pacing to control heart rate when pharmacological therapy is insufficient or not tolerated (96, 186, 187). (Level of Evidence: B)
- 3. Intravenous amiodarone can be useful to control the heart rate in patients with AF when other measures are unsuccessful or contraindicated. (Level of Evidence: C)
- 4. For patients with AF and rapid ventricular response causing or suspected of causing tachycardia-induced cardiomyopathy, it is reasonable to achieve rate control by either AV nodal blockade or a rhythm-control strategy (188-190). (Level of Evidence: B)
- 5. For patients with chronic HF who remain symptomatic from AF despite a rate-control strategy, it is reasonable to use a rhythm-control strategy. (Level of Evidence: C)

Class IIb

- 1. Oral amiodarone may be considered when resting and exercise heart rate cannot be adequately controlled using a beta blocker (or a nondihydropyridine calcium channel antagonist in patients with HFpEF) or digoxin, alone or in combination, (Level of Evidence: C)
- 2. AV node ablation may be considered when the rate cannot be controlled and tachycardia-mediated cardiomyopathy is suspected. (Level of Evidence: C)

Class III: Harm

- 1. AV node ablation should not be performed without a pharmacological trial to achieve ventricular rate control. (Level of Evidence: C)
- 2. For rate control, intravenous nondihydropyridine calcium channel antagonists, intravenous beta blockers, and dronedarone should not be administered to patients with decompensated HF. (Level of Evidence: C)

6.7. Familial (Genetic) AF: Recommendation

Class IIb

1. For patients with AF and multigenerational family members with AF, referral to a tertiary care center for genetic counseling and testing may be considered. (*Level of Evidence: C*)

6.8. Postoperative Cardiac and Thoracic Surgery: Recommendations

Class I

- 1. Treating patients who develop AF after cardiac surgery with a beta blocker is recommended unless contraindicated (191-194). (Level of Evidence: A)
- 2. A nondihydropyridine calcium channel blocker is recommended when a beta blocker is inadequate to achieve rate control in patients with postoperative AF (195). (Level of Evidence: B)

Class IIa

- 1. Preoperative administration of amiodarone reduces the incidence of AF in patients undergoing cardiac surgery and is reasonable as prophylactic therapy for patients at high risk for postoperative AF (196-198). (Level of Evidence: A)
- 2. It is reasonable to restore sinus rhythm pharmacologically with ibutilide or direct-current cardioversion in patients who develop postoperative AF, as advised for nonsurgical patients (199). (Level of Evidence: B)
- 3. It is reasonable to administer antiarrhythmic medications in an attempt to maintain sinus rhythm in patients with recurrent or refractory postoperative AF, as advised for other patients who develop AF (195). (Level of Evidence: B)
- 4. It is reasonable to administer antithrombotic medication in patients who develop postoperative AF, as advised for nonsurgical patients (200). (Level of Evidence: B)
- 5. It is reasonable to manage well-tolerated, new-onset postoperative AF with rate control and anticoagulation with cardioversion if AF does not revert spontaneously to sinus rhythm during follow-up. (Level of Evidence: C)

Class IIb

- 1. Prophylactic administration of sotalol may be considered for patients at risk of developing AF following cardiac surgery (194, 201). (Level of Evidence: B)
- 2. Administration of colchicine may be considered for patients postoperatively to reduce AF following cardiac surgery (202). (Level of Evidence: B)

Table 12. Summary of Recommendations for Specific Patient Groups and AF

Recommendations	COR	LOE	References
Hypertrophic cardiomyopathy			
Anticoagulation indicated in HCM with AF independent of the			
CHA ₂ DS ₂ -VASc score	I	В	(170, 171)
Antiarrhythmic drugs can be useful to prevent recurrent AF in HCM.			
Amiodarone, or disopyramide combined with beta blockers or	Па	С	N/A
nondihydropyridine calcium channel antagonist are reasonable			
AF catheter ablation can be beneficial for HCM to facilitate a rhythm-		D	(150, 155)
control strategy when antiarrhythmics fail or are not tolerated	Па	В	(172-175)
Sotalol, dofetilide, and dronedarone may be considered for a rhythm-	TTI	C	(12)
control strategy in HCM	IIb	С	(13)
AF complicating ACS			
Urgent cardioversion of new onset AF in setting of ACS is			
recommended for patients with hemodynamic compromise, ongoing	I	С	N/A
ischemia, or inadequate rate control			
IV beta blockers are recommended to slow RVR with ACS and no	.	C	27/4
HF, hemodynamic instability, or bronchospasm	I	С	N/A
With ACS and AF with CHA ₂ DS ₂ -VASc (score ≥2), anticoagulation	T	C	27/4
with warfarin is recommended unless contraindicated	I	С	N/A
Amiodarone or digoxin may be considered to slow a RVR with ACS			
and AF, and severe LV dysfunction and HF or hemodynamic	IIb	С	N/A
instability			Heart
Nondihydropyridine calcium antagonists might be considered to slow			Association
a RVR with ACS and AF only in the absence of significant HF or	IIb	С	N/A
hemodynamic instability	110	C	1,712
Hyperthyroidism			
Beta blockers are recommended to control ventricular rate with AF			
complicating thyrotoxicosis, unless contraindicated	I	C	N/A
Nondihydropyridine calcium channel antagonist is recommended to			
control the ventricular rate with AF and thyrotoxicosis when beta	I	С	N/A
blocker cannot be used	1	C	14/11
Pulmonary diseases			
Nondihydropyridine calcium channel antagonist is recommended to			
control the ventricular rate with COPD and AF	I	C	N/A
Cardioversion should be attempted with pulmonary disease patients			
who become hemodynamically unstable with new onset AF	I	C	N/A
WPW and pre-excitation syndromes Cardioversion recommended with AF, WPW, and RVR who are			
hemodynamically compromised	I	C	(176)
IV procainamide or ibutilide to restore sinus rhythm or slow			
1 · ·	I	С	(176)
ventricular rate recommended with pre-excited AF and RVR who are	1	C	(176)
not hemodynamically compromised			
Catheter ablation of accessory pathway is recommended in	T	C	(176)
symptomatic patients with pre-excited AF, especially if the accessory	I	С	(176)
pathway has a short refractory period			
IV amiodarone, adenosine, digoxin, or nondihydropyridine calcium	777 77	D	(177, 170)
channel antagonists with WPW who have pre-excited AF is	III: Harm	В	(177-179)
potentially harmful			
Heart failure Deta blocker or more dibude or widing coloium channel onto conict is			<u> </u>
Beta blocker or nondihydropyridine calcium channel antagonist is	I	В	(96)
recommended for persistent or permanent AF in patients with HFpEF			` ′
In the absence of pre-excitation, IV beta blocker (or a			
nondihydropyridine calcium channel antagonist with HFpEF) is		D	(100.100)
recommended to slow ventricular response to AF in the acute setting,	I	В	(180-183)
exercising caution in patients with overt congestion, hypotension or			
HFrEF			

In the absence of pre-excitation, IV digoxin or amiodarone is recommended to acutely control heart rate	I	В	(104, 181, 184, 185)
Assess heart rate during exercise and adjust pharmacological treatment in symptomatic patients during activity	I	С	N/A
Digoxin is effective to control resting heart rate with HFrEF	I	С	N/A
Combination digoxin and beta blocker (or a nondihydropyridine			
calcium channel antagonist with HFpEF), is reasonable to control rest and exercise heart rate with AF	IIa	В	(94, 181)
Reasonable to perform AV node ablation with ventricular pacing to control heart rate when pharmacological therapy insufficient or not tolerated	IIa	В	(96, 186, 187)
IV amiodarone can be useful to control the heart rate with AF when other measures are unsuccessful or contraindicated	IIa	C	N/A
With AF and RVR, causing or suspected of causing tachycardia- induced cardiomyopathy, it is reasonable to achieve rate control by AV nodal blockade or rhythm control strategy	IIa	В	(188-190)
In chronic HF patients who remain symptomatic from AF despite a rate-control strategy, it is reasonable to use a rhythm-control strategy	IIa	С	N/A
Amiodarone may be considered when resting and exercise heart rate cannot be controlled with a beta blocker (or a nondihydropyridine calcium channel antagonist with HFpEF) or digoxin, alone or in combination	ПЬ	С	N/A
AV node ablation may be considered when rate cannot be controlled and tachycardia-mediated cardiomyopathy suspected	IIb	С	N/A
AV node ablation should not be performed without a pharmacological trial to control ventricular rate	III: Harm	С	N/A
For rate control, IV nondihydropyridine calcium channel antagonists, IV beta blockers and dronedarone should not be given with decompensated HF	III: Harm	С	N/A
Familial (Genetic) AF			
With AF and multigenerational AF family members, referral to a tertiary care center for genetic counseling and testing may be considered	IIb	С	N/A
Postoperative cardiac and thoracic surgery	EART ASS	SOCIATION	
Beta blocker is recommended to treat postoperative AF unless contraindicated	I	A	(191-194)
A nondihydropyridine calcium channel blocker is recommended when a beta blocker is inadequate to achieve rate control with postoperative AF	I	В	(195)
Preoperative amiodarone reduces AF with cardiac surgery and is reasonable as prophylactic therapy for high risk of postoperative AF	IIa	A	(196-198)
It is reasonable to restore sinus rhythm pharmacologically with ibutilide or direct-current cardioversion with postoperative AF	IIa	В	(199)
It is reasonable to administer antiarrhythmic medications to maintain sinus rhythm with recurrent or refractory postoperative AF	IIa	В	(195)
It is reasonable to administer antithrombotic medications for postoperative AF	IIa	В	(200)
It is reasonable to manage new-onset postoperative AF with rate control and anticoagulation with cardioversion if AF does not revert spontaneously to sinus rhythm during follow-up	IIa	С	N/A
Prophylactic sotalol may be considered for patients with AF risk following cardiac surgery	IIb	В	(194, 201)
Colchicine may be considered postoperatively to reduce AF following cardiac surgery	IIb	В	(202)

AF indicates atrial fibrillation; AV, atrioventricular; COPD, chronic obstructive pulmonary disease; COR, Class of Recommendation; HCM, hypertrophic cardiomyopathy; HF, heart failure; HFpEF, heart failure with preserved ejection

fraction; HFrEF, heart failure with reduced ejection fraction; IV, intravenous; LOE, Level of Evidence; LV, left ventricular; N/A, not applicable; RVR, rapid ventricular response; and WPW, Wolff-Parkinson-White.

7. Evidence Gaps and Future Research Directions

The past decade has seen substantial progress in the understanding of AF mechanisms, clinical implementation of ablation for maintaining sinus rhythm, and new drugs for stroke prevention. Further studies are needed to better inform clinicians as to the risks and benefits of therapeutic options for an individual patient. Continued research is needed into the mechanisms that initiate and sustain AF. Better understanding of these tissue and cellular mechanisms will, hopefully, lead to more defined approaches to treat and abolish AF. This includes new methodological approaches for AF ablation that would favorably impact survival, thromboembolism, and quality of life across different patient profiles. New pharmacologic therapies are needed, including antiarrhythmic drugs that have atrial selectivity and drugs that target fibrosis, which will hopefully reach clinical evaluation. The successful introduction of new anticoagulants is encouraging, and further investigations will better inform clinical practices for optimizing beneficial applications and minimizing risks of these agents, particularly in the elderly, in the presence of comorbidities and in the periprocedural period. Further investigations must be performed to better understand the link between the presence of AF, AF burden, and stroke risk, and also to better define the relationship between AF and dementia. The roles of emerging surgical and procedural therapies to reduce stroke will be defined. Great promise lies in prevention. Future strategies for reversing the growing epidemic of AF will come from basic science and genetic, epidemiologic, and clinical studies.

Presidents and Staff

American College of Cardiology

John Gordon Harold, MD, MACC, President

Shalom Jacobovitz, Chief Executive Officer

William J. Oetgen, MD, MBA, FACC, Executive Vice President, Science, Education, and Quality Charlene May, Senior Director, Science and Clinical Policy

American College of Cardiology/American Heart Association

Lisa Bradfield, CAE, Director, Science and Clinical Policy Ezaldeen Ramadhan III, Project Management Team Leader, Science and Clinical Policy Emily Cottrell, MA, Quality Assurance, Science and Clinical Policy

American Heart Association

Mariell Jessup, MD, FACC, FAHA, President

Nancy Brown, Chief Executive Officer

Rose Marie Robertson, MD, FAHA, Chief Science Officer

Gayle R. Whitman, PhD, RN, FAHA, FAAN, Senior Vice President, Office of Science Operations

Marco Di Buono, PhD, Vice President, Science, Research, and Professional Education

Jody Hundley, Production Manager, Scientific Publications, Office of Science Operations

Key Words: AHA Scientific Statements ■ atrial fibrillation ■ cardio-renal physiology/pathophysiology ■ cardiovascular surgery: transplantation, ventricular assistance, cardiomyopathy ■ epidemiology ■ full revision ■ health policy and outcome research ■ other atrial fibrillation.

Circulation

JOURNAL OF THE AMERICAN HEART ASSOCIATION

Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation

Committee Member	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness	Voting Recusals by Section*
Craig T. January (Chair)	University of Wisconsin- Madison—Professor of Medicine, Cardiovascular Medicine Division	None	None	None	None	None	None Hour	None
L. Samuel Wann (Vice Chair)	Columbia St. Mary's Cardiovascular Physicians—Clinical Cardiologist	• United Healthcare	None	None	None	None	None	4.1 5.0 6.3 7.3 7.10
Joseph S. Alpert	University of Arizona Health Sciences Center— Professor of Medicine	Bayer Pharmaceuticals (DSMB)‡ Boehringer Ingelheim Daiichi-Sankyo Johnson & Johnson Roche Diagnostics Sanofi-aventis Servier Pharmaceuticals	None	None	None A S	None	None	4.1 5.0
Hugh Calkins	Johns Hopkins Hospital— Professor of Medicine, Director of Electrophysiology	 Atricure Biosense Webster Carecore iRhythm Medtronic† Sanofi-aventis 	None	None	None	None	None	5.0 6.3 7.8
Joaquin E. Cigarroa	Oregon Health & Science University—Clinical	None	None	None	None	None	None	None

	Professor; Clinical Chief of Cardiology							
Joseph C. Cleveland, Jr	University of Colorado— Professor of Surgery; Denver Veteran's Administration Hospital— Chief, Cardiac Surgery	None	None	None	None	None	None	None
Jamie B. Conti	University of Florida— Professor of Medicine; Division of Cardiovascular Medicine—Chief	None	None	None	Boston Scientific† Medtronic† St. Jude Medical†	Boston Scientific† Medtronic† St. Jude Medical†	None	5.0 6.3 7.8
Patrick T. Ellinor	Massachusetts General Hospital Heart Center, Cardiac Arrhythmia Service—Director	None	None	None	None	None	None	None
Michael D. Ezekowitz	Jefferson Medical College— Professor	• ARYx Therapeutics† • AstraZeneca • Boehringer Ingelheim† • Bristol-Myers Squibb† • Daiichi-Sankyo† • Eisai • Johnson & Johnson†	None	None	• ARYx Therapeutics † • Boehringer Ingelheim† • Daiichi- Sankyo‡ • Portola‡	None	None	4.1 5.0 6.3 7.8
	Journa	Medtronic†Pfizer†Portola†Sanofi-aventis†	AMER	IGAN HI	CART AS	SOCIATI	ON	
Michael E. Field	University of Wisconsin School of Medicine and Public Health—Assistant Professor of Medicine, Director of Cardiac Arrhythmia Service	None	None	None	None	None	None	None
Katherine T. Murray	Vanderbilt University School of Medicine, Divisions of Clinical	None	None	None	• GlaxoSmith Kline‡	None	None	None

of Miami, Miller of Medicine, ment of ogy—Chairman n & Women's l, Cardiac mia Program— r; Harvard Medical —Professor of	Boehringer Ingelheim‡§ None	None	None • Biosense	None • Biosense	None	None	None
l, Cardiac mia Program— r; Harvard Medical	None	None		• Biosense	None	None	5 0
e			Webster— Needle Ablation Patent‡	Webster†	Tione	American Hear	5.0 6.3 7.8
nd Clinic tion—Section of Electrophysiology ing, Department of vascular Medicine nd Vascular	None	None	None	None	None	None	None
Washington ity Medical —Associate Director fessor of Medicine	None	None	None	None	None	None	None
estern University, g School of ne—Magerstadt or of Medicine;	None	None	None	None	None	None	None
tion in the second	ion—Section of Electrophysiology ng, Department of ascular Medicine d Vascular Washington ty Medical -Associate Director essor of Medicine estern University, g School of e—Magerstadt	ion—Section of Electrophysiology ng, Department of ascular Medicine d Vascular Washington ty Medical -Associate Director essor of Medicine estern University, g School of e—Magerstadt or of Medicine;	ion—Section of Electrophysiology ng, Department of ascular Medicine d Vascular Washington ty Medical -Associate Director essor of Medicine estern University, g School of e—Magerstadt or of Medicine;	ion—Section of Electrophysiology ng, Department of ascular Medicine d Vascular Washington ty Medical -Associate Director essor of Medicine stern University, g School of e—Magerstadt or of Medicine;	ion—Section of Electrophysiology ng, Department of ascular Medicine d Vascular Washington ty Medical -Associate Director essor of Medicine stern University, g School of e—Magerstadt or of Medicine;	ion—Section of Electrophysiology ng, Department of ascular Medicine d Vascular Washington ty Medical -Associate Director essor of Medicine stern University, g School of e—Magerstadt or of Medicine;	ion—Section of Electrophysiology ng, Department of ascular Medicine d Vascular Washington None None None None None None ty Medical Associate Director ressor of Medicine rof Medicine; School of e—Magerstadt or of Medicine;

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq 10,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACC/AHA, a person has a *relevant* relationship IF: a) The *relationship or interest* relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the *document*; or b) The *company/entity* (with whom the relationship exists) makes a drug, drug class, or device addressed in the *document*, or makes a competing drug or device addressed in the *document*; or c) The *person or a member of the person's household*, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the *document*.

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply. Section numbers pertain to those in the full-text guideline.

†Indicates significant relationship.

‡No financial benefit.

§Dr. Sacco's relationship with Boehringer Ingelheim was added just after final balloting of the recommendations and prior to organizational review, so it was not relevant during the writing or voting stages of the guideline's development.

ACC indicates American College of Cardiology; AHA, American Heart Association; DSMB, data safety monitoring board; and HRS, Heart Rhythm Society.

Circulation

JOURNAL OF THE AMERICAN HEART ASSOCIATION

Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant)—2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation

Reviewer	Representation	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness
A. John Camm	Official Reviewer— HRS	St. George's, University of London—Professor of Clinical Cardiology	 Bayer Biotronik Boehringer Ingelheim Boston Scientific Bristol-Myers Squibb ChanRx Daiichi-Sankyo Forest Laboratories Johnson & Johnson 	• Pfizer	None	Biotronik† Servier (DSMB) St. Jude Medical (DSMB)	None Image Heart Lasociation	None
		i 110	 Medtronic Novartis* Sanofi-aventis Servier St. Jude Medical Takeda Xention 	la	ti	01	n	
John Fisher	Official Reviewer— AHA	Albert Einstein College of Medicine—Professor of Medicine	Medtronic* A H E R I C	None	None	None	 Biotronik* Boston Scientific* Medtronic* St. Jude Medical* 	None
Jonathan Halperin	Official Reviewer— ACC/AHA Task Force on Practice Guidelines	Mt. Sinai Medical Center—Professor of Medicine	 AstraZeneca Bayer Biotronik* Boehringer Ingelheim* Boston Scientific Bristol-Myers Squibb Daiichi-Sankyo 	None	None	None	None	None

Jose Joglar	Official Reviewer— AHA	UT Southwestern Medical Center— Associate Professor of Internal Medicine	 Janssen Pharmaceuticals Johnson & Johnson Medtronic Pfizer Sanofi-aventis None 	None	None	None	Medtronic* St. Jude Medical*	None
Peter Kowey	Official Reviewer— HRS	Lankenau Medical Office Building—Chief of Cardiology	 Astellas† AstraZeneca* Boehringer Ingelheim* Bristol-Myers Squibb Daiichi-Sankyo* Forest Laboratories GlaxoSmithKline* Johnson & Johnson* Medtronic Merck* Pfizer* Portola Sanofi-aventis* 	None	• Cardionet*	None	None Haart Januari	None
John Strobel Stuart Winston	Official Reviewer— ACC Board of Governors	Premier Healthcare, LLC—Clinical Cardiac Electrophysiologist; Indiana University— Assistant Clinical Professor of Medicine Michigan Heart, P. C.	None None None	 Boehringer Ingelheim Bristol-Myers Squibb Pfizer Sanofiaventis None 	None None	None None	None • Biotronik†	Plaintiff, ICD, 2012 None
Stuart Whistoff	Reviewer— ACC Board of Trustees	Michigan Heart & Vascular Institute— Cardiologist	NORC	None	None	TAOHC	Medtronic†	None
James R. Edgerton	Organizational Reviewer—STS	The Heart Hospital Baylor Plano— Cardiologist; University of Texas at Arlington—	None	AtriCure*	None	None	None	None

Jeffrey	Content	Adjunct Assistant Clinical Professor Intermountain Medical	The Medicines	None	None	None	None	None
Anderson	Reviewer— ACC/AHA Task Force on Practice Guidelines	Center—Associate Chief of Cardiology	Company • Sanofi-aventis	T. Conc	T.O.I.C	T.one		Tione
Nancy Berg	Content Reviewer— ACC EP Committee	Park Nicollet Health Services—Registered Nurse	Medtronic	None	None	Mayo Clinic	Medtronic†	None
Emmanouil Brilakis	Content Reviewer— ACC Interventional Scientific Council	UT Southwestern Medical School— Director Cardiac Catheterization Laboratory, VA North Texas Healthcare System	 Boston Scientific* Bridgepoint Medical* Janssen Pharmaceuticals Sanofi-aventis St. Jude Medical 	None	None	None	 Abbott Vascular† AstraZeneca† Cordis* Daiichi- Sankyo* Medtronic* The Medicines Company* 	None
Yong-Mei Cha	Content Reviewer— AHA	Mayo Clinic, Division of Cardiovascular Diseases—Professor of Medicine	None	None	None	None	None	None
Jafna Cox	Content Reviewer— ACC Board of Governors	Queen Elizabeth II Health Sciences Center—Professor, Departments of Medicine, Community Health, and Epidemiology	AstraZeneca Bayer Boehringer Ingelheim		None	• Bayer* • Pfizer*	None	None
Anne Curtis	Content Reviewer	University of Buffalo— Charles & Mary Bauer Professor of Medicine	 Biosense Webster Bristol-Myers Squibb Medtronic* Pfizer Sanofi-aventis St. Jude Medical 	None	None	None	None	None

Lesley Curtis	Content Reviewer— ACC/AHA Task Force on	Duke University School of Medicine—Associate Professor of Medicine	None	None	None	None	 Medtronic* GE Healthcare* GlaxoSmithKlin e* 	None
	Practice Guidelines						• Johnson & Johnson*	
Kenneth Ellenbogen	Content Reviewer	VCU Medical Center— Director, Clinical EP Laboratory	 Biosense Webster Biotronik* Boston Scientific* Cameron Health Janssen Pharmaceuticals Medtronic* Sanofi-aventis St. Jude Medical 	None	None	 Biosense Webster* Boston Scientific* Medtronic* Sanofiaventis* 	 Biosense Webster* Boston Scientific* Cardionet Medtronic* Sanofi-aventis* St. Jude Medical* 	• Represent ed hospital, ICD, 2012
N.A. Mark Estes III	Content Reviewer	Tufts University School of Medicine—Professor of Medicine	Boston Scientific* Medtronic	None	None	Boston Scientific	 Boston Scientific* Medtronic* St. Jude Medical* 	None
Gregg Fonarow	Content Reviewer	Ahmanson—UCLA Cardiomyopathy Center, Division of Cardiology	 Boston Scientific Johnson & Johnson The Medicines Company Medtronic 	None	None	Novartis*	Medtronic†	None
Valentin Fuster	Content Reviewer	Mount Sinai School of Medicine—Director, Zena and Michael A. Wiener Cardiovascular Institute	None HE AMERIC	None HEAD	None	None	None	None
Richard Goodman	Content Reviewer— HHS	HHS Office of the Assistant Secretary for Health, and National Center for Chronic Disease Prevention and Health Promotion Centers for Disease Control and Prevention—Senior	None	None	None	None	None	None

		Medical Advisor						
Judith Hochman	Content Reviewer— ACC/AHA Task Force on Practice Guidelines	New York University School of Medicine— Clinical Chief of Cardiology	• GlaxoSmithKline • Janssen Pharmaceuticals	None	None	None	None	None
Warren Jackman	Content Reviewer	University of Oklahoma Health Sciences Center for Cardiac Arrhythmia Research Institute— Professor of Medicine	Biosense Webster*Endosense*Vytronus*	Biotronik* Boston Scientific*	Rhythmia Medical*	Boston Scientific* Rhythmia Medical*	None	None
Samuel Jones	Content Reviewer— ACC Board of Governors	USUHS—Associate Professor of Medicine	None	None	None	None	Medtronic† St. Jude Medical†	None
Paulus Kirchhof	Content Reviewer— HRS	University of Birmingham, School of Clinical and Experimental Medicine—Chair in Cardiovascular Medicine	None	None	None	• Sanofiaventis (DSMB)	None	None
Bradley Knight	Content Reviewer	Northwestern Medical Center Division of Cardiology—Director of Clinical Cardiac EP	Boston Scientific Cameron Health†	Biosense Webster Biotronik Boston Scientific Medtronic	None	Catheter Robotics	None	• Plaintiff, Pacemaker surgery, 2012
Austin Kutscher	Content Reviewer	Hunterdon Cardiovascular Associates— Cardiologist	• Pfizer	Bristol-Myers SquibbForest Laboratories	None	Boehringer IngelheimBristol-Myers Squibb	None	None
Gregory Michaud	Content Reviewer	Harvard Medical School, Brigham and Women's Hospital—Assistant Professor	Boston Scientific Medtronic	None	None	Boston Scientific* St. Jude Medical*	None	None
William Miles	Content Reviewer	University of Florida, Department of Medicine—Cardiologist	None	None	None	• Medtronic— STOP-AF (PI)	None	None

						Zoll Medical		
Simone Musco	Content Reviewer— ACC Board of Governors	Saint Patrick Hospital— Cardiologist	None	Bristol-Myers SquibbSanofi- aventis	None	None	None	None
Brian Olshansky	Content Reviewer— ACC EP Committee	University of Iowa Hospital—Professor of Medicine	 Boehringer Ingleheim Boston Scientific Guidant Medtronic* Sanofi-aventis 	None	None	Boston Scientific (DSMB) Sanofiaventis (DSMB)	None	None
Huseyin Murat Ozdemir	Content Reviewer— AIG	Gazi University School of Medicine—Professor of Cardiology	 Bayer Boehringer Ingelheim Bristol-Myers Squibb Novartis Pfizer Servier 	None	None	None	None	None
Douglas Packer	Content Reviewer	Mayo Foundation St. Mary's Hospital Complex—Professor of Medicine	 Abiomed† Biosense Webster† Boston Scientific† InfoBionic† Johnson & Johnson† Medtronic† Janssen Pharmaceuticals† Sanofi-aventis† Siemens† St. Jude Medical† 	None	None	 Biosense Webster* Boston Scientific* CardioFocus Endosense* Hansen Medical Medtronic* Siemens St. Jude Medical* Thermedical* 	• St. Jude Medical*	None
Richard Page	Content Reviewer	University of Wisconsin Hospital & Clinics— Chair, Department of Medicine	None	None	None	None	None	None
Robert Page	Content Reviewer—	University of Colorado School of Pharmacy—	None	None	None	None	None	None

	AHA PharmD	Associate Professor						
Gurusher Panjrath	Content Reviewer— ACC Heart Failure and Transplant Council	George Washington University—Assistant Professor of Medicine	None	None	None	None	None	None
Eric Prystowsky	Content Reviewer— HRS	St. Vincent Hospital and Health Center—Director, Clinical EP Laboratory	• Bard* • Medtronic*	None	CardioNet*Topera*Stereotaxis*	None	• CardioNet* • Stereotaxis*	None
Pasala Ravichandran	Content Reviewer— ACC Surgeons Council	Oregon Health & Science University— Associate Professor	None	None	None	None	None	None
Anitra Romfh	Content Reviewer— ACC Adult Congenital and Pediatric Cardiology	Children's Hospital Boston—Cardiologist	None	None	None	None	None	None
Elizabeth Saarel	Content Reviewer— ACC Adult Congenital and Pediatric Cardiology	University of Utah School of Medicine and Primary Children's Medical Center— Associate Professor	None	None	None	None	None	None
Marcel Salive	Content Reviewer— HHS	National Institute on Aging, Division of Geriatrics and Clinical Gerontology	None A F F F F	None	• Express Scripts*	None	None	None
John Sapp	Content Reviewer— HRS	Dalhousie University— Director of EP	Biosense Webster	None	None	Biosense Webster* St. Jude Medical*	None	None
Frank Sellke	Content Reviewer— ACC/AHA Task Force on Practice	Cardiovascular Institute, Rhode Island Hospital— Lifespan's Chief of Cardiothoracic Surgery	None	None	None	None	The Medicines Company	None

	Guidelines							
Win-Kuang Shen	Content Reviewer— ACC/AHA Task Force on Practice Guidelines	Mayo Clinic Arizona— Professor of Medicine, Consultant	None	None	None	None	None	None
David J. Slotwiner	Content Reviewer	Long Island Jewish Medical Center— Association Director, EP Laboratory	None	None	None	None	Boston Scientific	None
Jonathan Steinberg	Content Reviewer	Valley Health System Arrhythmia Institute— Director; Columbia University College of Physicians & Surgeons—Professor of Medicine	AmbucorBiosense WebsterBoston ScientificMedtronic	 Bristol-Myers Squibb* Sanofi- aventis 	None	Biosense Webster* Janssen Pharmaceutic als Medtronic*	None	None
Vinod Thourani	Content Reviewer— ACC Surgeons Council	Emory University School of Medicine— Associate Professor of Cardiothoracic Surgery	Edwards LifesciencesSorinSt. Jude Medical	None	• Apica Cardiovascula r†	Maquet	None	None
Mellanie True Hills	Content Reviewer— Patient Advocate	StopAfib.org—Speaker and Chief Executive Officer	• AtriCure	None	None	None	 Bayer* Boehringer Ingelheim* Janssen Pharmaceuticals Johnson & Johnson* Medtronic Sanofi-aventis* 	None
Albert Waldo	Content Reviewer— HRS	Case Western Reserve University—The Walter H. Pritchard Professor of Cardiology, Professor of Medicine, and Professor of Biomedical	 Abbott Vascular AtriCure Biosense Webster Biotronik Daiichi-Sankyo Gilead 	 Janssen Pharmaceutic als* Sanofiaventis* 	None	 Biotronik Daiichi- Sankyo Gilead* St. Jude Medical* 	None	None

Engineering	• Janssen
	Pharmaceuticals*
	• Merck
	• Pfizer
	• Sanofi-aventis

This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant to this document. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$10 000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

According to the ACC/AHA, a person has a *relevant* relationship IF: a) The *relationship or interest* relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the *document*; or b) The *company/entity* (with whom the relationship exists) makes a drug, drug class, or device addressed in the *document*, or makes a competing drug or device addressed in the *document*; or c) The *person or a member of the person's household*, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the *document*.

*Significant relationship †No financial benefit

ACC indicates American College of Cardiology; AHA, American Heart Association; AIG, Association of International Governors; DSMB, data safety monitoring board; EP, electrophysiology; HF, heart failure; HHS, Health and Human Services; HRS, Heart Rhythm Society; ICD, implantable cardioverter-defibrillator; PharmD, doctor of pharmacy; PI, principal investigator; STS, Society of Thoracic Surgeons; UCLA, University of California, Los Angeles; USUHS, Uniformed Services University of the Health Sciences; UT, University of Texas; VA, Veterans Affairs; and VCU, Virginia Commonwealth University.

JOURNAL OF THE AMERICAN HEART ASSOCIATION

Appendix 3. Initial Clinical Evaluation in Patients With AF

	Minimum Evaluation					
	Presence and nature of symptoms associated with AF					
	Clinical type of AF (paroxysmal, persistent, or permanent)					
	Onset of the first symptomatic attack or date of discovery of AF					
History and physical examination, to define	• Frequency, duration, precipitating factors, and modes of initiation or termination of AF					
	Response to any pharmacological agents that have been administered					
	 Presence of any underlying heart disease or reversible conditions (e.g., hyperthyroidism or alcohol consumption) 					
	• Rhythm (verify AF)					
	• LVH					
	P-wave duration and morphology or fibrillatory waves					
	Pre-excitation					
2. ECG, to identify	Bundle-branch block					
	• Prior MI					
	Other atrial arrhythmias					
~ 0	To measure and follow the R-R, QRS, and QT intervals in conjunction with antiarrhythmic drug therapy					
	• VHD					
	LA and RA size					
	LV and RV size and function					
3. TTE, to identify	Peak RV pressure (pulmonary hypertension)					
	LV hypertrophy					
JOURNAL OF 1	LA thrombus (low sensitivity)					
	Pericardial disease					
4. Blood tests of thyroid, renal, and	For a first episode of AF					
hepatic function	When the ventricular rate is difficult to control					
Addition	nal Testing (1 or several tests may be necessary)					
1. 6-min walk test	If the adequacy of rate control is in question					
	If the adequacy of rate control is in question					
2. Exercise testing	To reproduce exercise-induced AF					
<i>g</i>	• To exclude ischemia before treatment of selected patients with a type IC* antiarrhythmic drug					
2 Holter or event monitoring	If diagnosis of the type of arrhythmia is in question					
3. Holter or event monitoring	As a means of evaluating rate control					
4. TEE	To identify LA thrombus (in the LAA)					
4. 1BE	To guide cardioversion					
	To clarify the mechanism of wide-QRS-complex tachycardia					
5. Electrophysiological study	To identify a predisposing arrhythmia such as atrial flutter or paroxysmal supraventricular tachycardia					

	To seek sites for curative AF ablation or AV conduction block/modification
6 Chart radiograph to avaluate	Lung parenchyma, when clinical findings suggest an abnormality
6. Chest radiograph, to evaluate	Pulmonary vasculature, when clinical findings suggest an abnormality

^{*}Type IC refers to the Vaughan-Williams classification of antiarrhythmic drugs.

AF indicates atrial fibrillation; AV, atrioventricular; ECG, electrocardiogram; LA, left atrial; LAA, left atrial appendage; LV, left ventricular; LVH, left ventricular hypertrophy; MI, myocardial infarction; RA, right atrial; RV, right ventricular; TEE, transesophageal echocardiography; TTE, transthoracic echocardiogram; and VHD, valvular heart disease. Modified from Fuster, et al. (5-8).

Circulation

JOURNAL OF THE AMERICAN HEART ASSOCIATION

References

- ACCF.AHA Task Force on Practice Guidelines. Methodology Manual and Policies From the ACCF/AHA Task
 Force on Practice Guidelines. American College of Cardiology Foundation and American Heart Association, Inc.
 Cardiosource.com. 2010. Available at:
 http://assets.cardiosource.com/Methodology_Manual_for_ACC_AHA_Writing_Committees.pdf and
 http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/documents/downloadable/ucm_319826.pdf.
 Accessed May 16, 2012.
- 2. Committee on Standards for Systematic Reviews of Comparative Effectiveness Research, Institute of Medicine. Finding What Works in Health Care: Standards for Systematic Reviews. Washington, DC: The National Academies Press, 2011.
- 3. Committee on Standards for Developing Trustworthy Clinical Practice Guidelines; Institute of Medicine. Clinical Practice Guidelines We Can Trust. Washington, DC: The National Academies Press, 2011.
- 4. January C, Wann L, et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. JACC. 2014;
- 5. Wann LS, Curtis AB, Ellenbogen KA, et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (update on dabigatran): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2011;57:1330-7.
- 6. Wann LS, Curtis AB, January CT, et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (Updating the 2006 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2011;57:223-42.
- 7. Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114:e257-e354.
- 8. Fuster V, Ryden LE, Cannom DS, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2011;57:e101-e198.
- 9. Agency for Healthcare Research and Quality. Research Protocol: Treatment of Atrial Fibrillation. http://effectivehealthcare.ahrq.gov/index.cfm/search-for-guides-reviews-and-reports/?productid=946&pageaction=displayproduct. 2012; Accessed December 2012.
- 10. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206-52.
- 11. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:e50-103.
- 12. Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e123-e210.
- 13. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212-e260.
- 14. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58:e44-122.
- 15. Smith SC, Jr., Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American

- Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. J Am Coll Cardiol. 2011;58:2432-46.
- 16. Skanes AC, Healey JS, Cairns JA, et al. Focused 2012 update of the Canadian Cardiovascular Society atrial fibrillation guidelines: recommendations for stroke prevention and rate/rhythm control. Can J Cardiol. 2012;28:125-36.
- 17. Camm AJ, Lip GY, De CR, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: An update of the 2010 ESC Guidelines for the management of atrial fibrillation * Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012.
- 18. Tracy CM, Epstein AE, Darbar D, et al. 2012 ACCF/AHA/HRS Focused Update Incorporated Into the ACCF/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2013;61:e6-e75.
- 19. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012;60:e44-e164.
- 20. Eikelboom JW, Hirsh J, Spencer FA, et al. Antiplatelet drugs: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e89S-119S.
- 21. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-e239.
- 22. O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61:e78-e140.
- 23. Amsterdam E, Wenger NK, Brindis R, et al. 2014 ACC/AHA Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Developed in Collaboration With the American Academy of Family Physicians, American College of Emergency Physicians, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. In Press. Journal of the American College of Cardiology. 2014; In Press
- 24. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014.
- 25. Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013.
- 26. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013.
- 27. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2013.
- 28. Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013.
- 29. Furie KL, Goldstein LB, Albers GW, et al. Oral antithrombotic agents for the prevention of stroke in nonvalvular atrial fibrillation: a science advisory for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:3442-53.
- 30. Calkins H, Kuck KH, Cappato R, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the

January, CT et al.

2014 AHA/ACC/HRS Atrial Fibrillation Guideline

Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm. 2012;9:632-96.

- 31. Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010;31:2369-429.
- 32. Healey JS, Connolly SJ, Gold MR, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366:120-9.
- 33. Santini M, Gasparini M, Landolina M, et al. Device-detected atrial tachyarrhythmias predict adverse outcome in real-world patients with implantable biventricular defibrillators. J Am Coll Cardiol. 2011;57:167-72.
- 34. Savelieva I, Kakouros N, Kourliouros A, et al. Upstream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention. Europace. 2011;13:308-28.
- 35. Wakili R, Voigt N, Kaab S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121:2955-68.
- 36. Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840-4.
- 37. Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920-5.
- 38. Frost L, Hune LJ, Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Med. 2005;118:489-95.
- 39. Wang TJ, Parise H, Levy D, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292:2471-7.
- 40. Gami AS, Hodge DO, Herges RM, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49:565-71.
- 41. Mathew JP, Fontes ML, Tudor IC, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA. 2004;291:1720-9.
- 42. Heeringa J, Kors JA, Hofman A, et al. Cigarette smoking and risk of atrial fibrillation: the Rotterdam Study. Am Heart J. 2008;156:1163-9.
- 43. Aizer A, Gaziano JM, Cook NR, et al. Relation of vigorous exercise to risk of atrial fibrillation. Am J Cardiol. 2009;103:1572-7.
- 44. Mont L, Sambola A, Brugada J, et al. Long-lasting sport practice and lone atrial fibrillation. Eur Heart J. 2002;23:477-82.
- 45. Frost L, Frost P, Vestergaard P. Work related physical activity and risk of a hospital discharge diagnosis of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Occup Environ Med. 2005;62:49-53.
- 46. Conen D, Tedrow UB, Cook NR, et al. Alcohol consumption and risk of incident atrial fibrillation in women. JAMA. 2008;300:2489-96.
- 47. Frost L, Vestergaard P. Alcohol and risk of atrial fibrillation or flutter: a cohort study. Arch Intern Med. 2004:164:1993-8.
- 48. Kodama S, Saito K, Tanaka S, et al. Alcohol consumption and risk of atrial fibrillation: a meta-analysis. J Am Coll Cardiol. 2011;57:427-36.
- 49. Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med. 1994;331:1249-52.
- 50. Cappola AR, Fried LP, Arnold AM, et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA. 2006;295:1033-41.
- 51. Frost L, Vestergaard P, Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter: a population-based study. Arch Intern Med. 2004;164:1675-8.
- 52. Mitchell GF, Vasan RS, Keyes MJ, et al. Pulse pressure and risk of new-onset atrial fibrillation. JAMA. 2007;297:709-15.
- 53. Marcus GM, Alonso A, Peralta CA, et al. European ancestry as a risk factor for atrial fibrillation in African Americans. Circulation. 2010;122:2009-15.
- 54. Lubitz SA, Yin X, Fontes JD, et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304:2263-9.
- 55. Ellinor PT, Lunetta KL, Albert CM, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44:670-5.
- 56. Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41:876-8.
- 57. Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353-7.

January, CT et al.

2014 AHA/ACC/HRS Atrial Fibrillation Guideline

- 58. Benjamin EJ, Rice KM, Arking DE, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41:879-81.
- 59. Kannel WB, Wolf PA, Benjamin EJ, et al. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 1998;82:2N-9N.
- 60. Pritchett AM, Jacobsen SJ, Mahoney DW, et al. Left atrial volume as an index of left atrial size: a population-based study. J Am Coll Cardiol. 2003;41:1036-43.
- 61. Cao JJ, Thach C, Manolio TA, et al. C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly: the Cardiovascular Health Study. Circulation. 2003;108:166-70.
- 62. Aviles RJ, Martin DO, Apperson-Hansen C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006-10.
- 63. Patton KK, Ellinor PT, Heckbert SR, et al. N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: the Cardiovascular Health Study. Circulation. 2009;120:1768-74.
- 64. Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655-63.
- 65. Ahmad Y, Lip GY, Apostolakis S. New oral anticoagulants for stroke prevention in atrial fibrillation: impact of gender, heart failure, diabetes mellitus and paroxysmal atrial fibrillation. Expert Rev Cardiovasc Ther. 2012;10:1471-80.
- 66. Chiang CE, Naditch-Brule L, Murin J, et al. Distribution and risk profile of paroxysmal, persistent, and permanent atrial fibrillation in routine clinical practice: insight from the real-life global survey evaluating patients with atrial fibrillation international registry. Circ Arrhythm Electrophysiol. 2012;5:632-9.
- 67. Flaker G, Ezekowitz M, Yusuf S, et al. Efficacy and safety of dabigatran compared to warfarin in patients with paroxysmal, persistent, and permanent atrial fibrillation: results from the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) study. J Am Coll Cardiol. 2012;59:854-5.
- 68. Hohnloser S.H., Duray G.Z., Baber U., et al. Prevention of stroke in patients with atrial fibrillation: current strategies and future directions. Eur Heart J. 2007;10:H4-H10.
- 69. Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137:263-72.
- 70. Olesen JB, Torp-Pedersen C, Hansen ML, et al. The value of the CHA2DS2-VASc score for refining stroke risk stratification in patients with atrial fibrillation with a CHADS2 score 0-1: a nationwide cohort study. Thromb Haemost. 2012;107:1172-9.
- 71. Mason PK, Lake DE, DiMarco JP, et al. Impact of the CHA2DS2-VASc score on anticoagulation recommendations for atrial fibrillation. Am J Med. 2012;125:603-6.
- 72. Cannegieter SC, Rosendaal FR, Wintzen AR, et al. Optimal oral anticoagulant therapy in patients with mechanical heart valves. N Engl J Med. 1995;333:11-7.
- 73. Acar J, Iung B, Boissel JP, et al. AREVA: multicenter randomized comparison of low-dose versus standard-dose anticoagulation in patients with mechanical prosthetic heart valves. Circulation. 1996;94:2107-12.
- 74. Hering D, Piper C, Bergemann R, et al. Thromboembolic and bleeding complications following St. Jude Medical valve replacement: results of the German Experience With Low-Intensity Anticoagulation Study. Chest. 2005;127:53-9.
- 75. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139-51.
- 76. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883-91.
- 77. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981-92.
- 78. Matchar DB, Jacobson A, Dolor R, et al. Effect of home testing of international normalized ratio on clinical events. N Engl J Med. 2010;363:1608-20.
- 79. Ezekowitz MD, James KE, Radford MJ, et al. Initiating and Maintaining Patients on Warfarin Anticoagulation: The Importance of Monitoring. J Cardiovasc Pharmacol Ther. 1999;4:3-8.
- 80. Hirsh J, Fuster V. Guide to anticoagulant therapy. Part 2: Oral anticoagulants. American Heart Association. Circulation. 1994;89:1469-80.
- 81. Aguilar M, Hart R. Antiplatelet therapy for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2005;CD001925.
- 82. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146:857-67.
- 83. Winkelmayer WC, Liu J, Setoguchi S, et al. Effectiveness and safety of warfarin initiation in older hemodialysis patients with incident atrial fibrillation. Clin J Am Soc Nephrol. 2011;6:2662-8.

- 84. Dewilde WJ, Oirbans T, Verheugt FW, et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet. 2013;381:1107-15.
- 85. Hariharan S, Madabushi R. Clinical pharmacology basis of deriving dosing recommendations for dabigatran in patients with severe renal impairment. J Clin Pharmacol. 2012;52:119S-25S.
- 86. Lehr T, Haertter S, Liesenfeld KH, et al. Dabigatran etexilate in atrial fibrillation patients with severe renal impairment: dose identification using pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52:1373-8.
- 87. Connolly SJ, Eikelboom J, Joyner C, et al. Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364:806-17.
- 88. Van de Werf F, Brueckmann M, Connolly SJ, et al. A comparison of dabigatran etexilate with warfarin in patients with mechanical heart valves: THE Randomized, phase II study to evaluate the safety and pharmacokinetics of oral dabigatran etexilate in patients after heart valve replacement (RE-ALIGN). Am Heart J. 2012;163:931-7.
- 89. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994;154:1449-57.
- 90. Gage BF, Waterman AD, Shannon W, et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285:2864-70.
- 91. Lip GY, Tse HF, Lane DA. Atrial fibrillation. Lancet. 2012;379:648-61.
- 92. Lane DA, Lip GY. Use of the CHA(2)DS(2)-VASc and HAS-BLED scores to aid decision making for thromboprophylaxis in nonvalvular atrial fibrillation. Circulation. 2012;126:860-5.
- 93. Hart RG, Pearce LA, Asinger RW, et al. Warfarin in atrial fibrillation patients with moderate chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:2599-604.
- 94. Farshi R, Kistner D, Sarma JS, et al. Ventricular rate control in chronic atrial fibrillation during daily activity and programmed exercise: a crossover open-label study of five drug regimens. J Am Coll Cardiol. 1999;33:304-10.
- 95. Steinberg JS, Katz RJ, Bren GB, et al. Efficacy of oral diltiazem to control ventricular response in chronic atrial fibrillation at rest and during exercise. J Am Coll Cardiol. 1987;9:405-11.
- 96. Olshansky B, Rosenfeld LE, Warner AL, et al. The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study: approaches to control rate in atrial fibrillation. J Am Coll Cardiol. 2004;43:1201-8.
- 97. Abrams J, Allen J, Allin D, et al. Efficacy and safety of esmolol vs propranolol in the treatment of supraventricular tachyarrhythmias: a multicenter double-blind clinical trial. Am Heart J. 1985;110:913-22.
- 98. Ellenbogen KA, Dias VC, Plumb VJ, et al. A placebo-controlled trial of continuous intravenous diltiazem infusion for 24-hour heart rate control during atrial fibrillation and atrial flutter: a multicenter study. J Am Coll Cardiol. 1991;18:891-7.
- 99. Siu CW, Lau CP, Lee WL, et al. Intravenous diltiazem is superior to intravenous amiodarone or digoxin for achieving ventricular rate control in patients with acute uncomplicated atrial fibrillation. Crit Care Med. 2009;37:2174-9.
- 100. Platia EV, Michelson EL, Porterfield JK, et al. Esmolol versus verapamil in the acute treatment of atrial fibrillation or atrial flutter. Am J Cardiol. 1989;63:925-9.
- 101. Van Gelder IC, Groenveld HF, Crijns HJ, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010;362:1363-73.
- 102. Delle KG, Geppert A, Neunteufl T, et al. Amiodarone versus diltiazem for rate control in critically ill patients with atrial tachyarrhythmias. Crit Care Med. 2001;29:1149-53.
- 103. Hou ZY, Chang MS, Chen CY, et al. Acute treatment of recent-onset atrial fibrillation and flutter with a tailored dosing regimen of intravenous amiodarone. A randomized, digoxin-controlled study. Eur Heart J. 1995;16:521-8.
- 104. Clemo HF, Wood MA, Gilligan DM, et al. Intravenous amiodarone for acute heart rate control in the critically ill patient with atrial tachyarrhythmias. Am J Cardiol. 1998;81:594-8.
- 105. Ozcan C, Jahangir A, Friedman PA, et al. Long-term survival after ablation of the atrioventricular node and implantation of a permanent pacemaker in patients with atrial fibrillation. N Engl J Med. 2001;344:1043-51.
- 106. Weerasooriya R, Davis M, Powell A, et al. The Australian Intervention Randomized Control of Rate in Atrial Fibrillation Trial (AIRCRAFT). J Am Coll Cardiol. 2003;41:1697-702.
- 107. Wood MA, Brown-Mahoney C, Kay GN, et al. Clinical outcomes after ablation and pacing therapy for atrial fibrillation: a meta-analysis. Circulation. 2000;101:1138-44.
- 108. Gulamhusein S, Ko P, Carruthers SG, et al. Acceleration of the ventricular response during atrial fibrillation in the Wolff-Parkinson-White syndrome after verapamil. Circulation. 1982;65:348-54.
- 109. Connolly SJ, Camm AJ, Halperin JL, et al. Dronedarone in high-risk permanent atrial fibrillation. N Engl J Med. 2011:365:2268-76.
- 110. Kober L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358:2678-87.

January, CT et al.

2014 AHA/ACC/HRS Atrial Fibrillation Guideline

- 111. Moreyra E, Finkelhor RS, Cebul RD. Limitations of transesophageal echocardiography in the risk assessment of patients before nonanticoagulated cardioversion from atrial fibrillation and flutter: an analysis of pooled trials. Am Heart J. 1995;129:71-5.
- 112. Gallagher MM, Hennessy BJ, Edvardsson N, et al. Embolic complications of direct current cardioversion of atrial arrhythmias: association with low intensity of anticoagulation at the time of cardioversion. J Am Coll Cardiol. 2002;40:926-33.
- 113. Jaber WA, Prior DL, Thamilarasan M, et al. Efficacy of anticoagulation in resolving left atrial and left atrial appendage thrombi: A transesophageal echocardiographic study. Am Heart J. 2000;140:150-6.
- 114. You JJ, Singer DE, Howard PA, et al. Antithrombotic therapy for atrial fibrillation: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines, Chest. 2012;141:e531S-e575S.
- 115. Klein AL, Grimm RA, Murray RD, et al. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. N Engl J Med. 2001;344:1411-20.
- 116. Nagarakanti R, Ezekowitz MD, Oldgren J, et al. Dabigatran versus warfarin in patients with atrial fibrillation: an analysis of patients undergoing cardioversion. Circulation. 2011;123:131-6.
- Piccini JP, Stevens SR, Lokhnygina Y, et al. Outcomes Following Cardioversion and Atrial Fibrillation Ablation in Patients Treated with Rivaroxaban and Warfarin in the ROCKET AF Trial. J Am Coll Cardiol. 2013;61:1998-2006.
- 118. Flaker G, Lopes RD, Al-Khatib SM, et al. Efficacy and Safety of Apixaban in Patients Following Cardioversion for Atrial Fibrillation: Insights from the ARISTOTLE trial. J Am Coll Cardiol. 2013.
- 119. von BK, Mills AM. Is discharge to home after emergency department cardioversion safe for the treatment of recent-onset atrial fibrillation? Ann Emerg Med. 2011;58:517-20.
- 120. Oral H, Souza JJ, Michaud GF, et al. Facilitating transthoracic cardioversion of atrial fibrillation with ibutilide pretreatment. N Engl J Med. 1999;340:1849-54.
- 121. Alboni P, Botto GL, Baldi N, et al. Outpatient treatment of recent-onset atrial fibrillation with the "pill-in-the-pocket" approach. N Engl J Med. 2004;351:2384-91.
- 122. Ellenbogen KA, Clemo HF, Stambler BS, et al. Efficacy of ibutilide for termination of atrial fibrillation and flutter. Am J Cardiol. 1996;78:42-5.
- 123. Khan IA. Single oral loading dose of propafenone for pharmacological cardioversion of recent-onset atrial fibrillation. J Am Coll Cardiol. 2001;37:542-7.
- 124. Patsilinakos S, Christou A, Kafkas N, et al. Effect of high doses of magnesium on converting ibutilide to a safe and more effective agent. Am J Cardiol. 2010;106:673-6.
- 125. Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: the symptomatic atrial fibrillation investigative research on dofetilide (SAFIRE-D) study. Circulation. 2000;102:2385-90.
- 126. Stambler BS, Wood MA, Ellenbogen KA, et al. Efficacy and safety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter or fibrillation. Ibutilide Repeat Dose Study Investigators. Circulation. 1996:94:1613-21.
- 127. Khan IA, Mehta NJ, Gowda RM. Amiodarone for pharmacological cardioversion of recent-onset atrial fibrillation. Int J Cardiol. 2003;89:239-48.
- 128. Letelier LM, Udol K, Ena J, et al. Effectiveness of amiodarone for conversion of atrial fibrillation to sinus rhythm: a meta-analysis. Arch Intern Med. 2003;163:777-85.
- 129. Pedersen OD, Bagger H, Keller N, et al. Efficacy of dofetilide in the treatment of atrial fibrillation-flutter in patients with reduced left ventricular function: a Danish investigations of arrhythmia and mortality on dofetilide (diamond) substudy. Circulation. 2001;104:292-6.
- 130. Singh BN, Singh SN, Reda DJ, et al. Amiodarone versus sotalol for atrial fibrillation. N Engl J Med. 2005;352:1861-72.
- 131. Lafuente-Lafuente C, Mouly S, Longas-Tejero MA, et al. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst Rev. 2007;CD005049.
- 132. Channer KS, Birchall A, Steeds RP, et al. A randomized placebo-controlled trial of pre-treatment and short- or long-term maintenance therapy with amiodarone supporting DC cardioversion for persistent atrial fibrillation. Eur Heart J. 2004;25:144-50.
- 133. Galperin J, Elizari MV, Chiale PA, et al. Efficacy of amiodarone for the termination of chronic atrial fibrillation and maintenance of normal sinus rhythm: a prospective, multicenter, randomized, controlled, double blind trial. J Cardiovasc Pharmacol Ther. 2001;6:341-50.
- 134. Hohnloser SH, Crijns HJ, van EM, et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N Engl J Med. 2009;360:668-78.

- 135. Singh BN, Connolly SJ, Crijns HJ, et al. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N Engl J Med. 2007;357:987-99.
- 136. Touboul P, Brugada J, Capucci A, et al. Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur Heart J. 2003;24:1481-7.
- 137. Van Gelder IC, Crijns HJ, Van Gilst WH, et al. Efficacy and safety of flecainide acetate in the maintenance of sinus rhythm after electrical cardioversion of chronic atrial fibrillation or atrial flutter. Am J Cardiol. 1989;64:1317-21.
- 138. Roy D, Talajic M, Dorian P, et al. Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med. 2000;342:913-20.
- 139. Bellandi F, Simonetti I, Leoncini M, et al. Long-term efficacy and safety of propafenone and sotalol for the maintenance of sinus rhythm after conversion of recurrent symptomatic atrial fibrillation. Am J Cardiol. 2001;88:640-5.
- 140. Dogan A, Ergene O, Nazli C, et al. Efficacy of propafenone for maintaining sinus rhythm in patients with recent onset or persistent atrial fibrillation after conversion: a randomized, placebo-controlled study. Acta Cardiol. 2004;59:255-61.
- 141. Pritchett EL, Page RL, Carlson M, et al. Efficacy and safety of sustained-release propafenone (propafenone SR) for patients with atrial fibrillation. Am J Cardiol. 2003;92:941-6.
- 142. Benditt DG, Williams JH, Jin J, et al. Maintenance of sinus rhythm with oral d,l-sotalol therapy in patients with symptomatic atrial fibrillation and/or atrial flutter. d,l-Sotalol Atrial Fibrillation/Flutter Study Group. Am J Cardiol. 1999;84:270-7.
- 143. Freemantle N, Lafuente-Lafuente C, Mitchell S, et al. Mixed treatment comparison of dronedarone, amiodarone, sotalol, flecainide, and propafenone, for the management of atrial fibrillation. Europace. 2011;13:329-45.
- 144. Piccini JP, Hasselblad V, Peterson ED, et al. Comparative efficacy of dronedarone and amiodarone for the maintenance of sinus rhythm in patients with atrial fibrillation. J Am Coll Cardiol. 2009;54:1089-95.
- 145. Le Heuzey JY, De Ferrari GM, Radzik D, et al. A short-term, randomized, double-blind, parallel-group study to evaluate the efficacy and safety of dronedarone versus amiodarone in patients with persistent atrial fibrillation: the DIONYSOS study. J Cardiovasc Electrophysiol. 2010;21:597-605.
- 146. Maintenance of sinus rhythm in patients with atrial fibrillation: an AFFIRM substudy of the first antiarrhythmic drug. J Am Coll Cardiol. 2003;42:20-9.
- 147. Brunton L. Antiarrhythmic drugs. In: Laso JS, Parker KL, editors. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2012:899-932.
- 148. Healey JS, Baranchuk A, Crystal E, et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol. 2005;45:1832-9.
- 149. Schneider MP, Hua TA, Bohm M, et al. Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol. 2010;55:2299-307.
- 150. Ducharme A, Swedberg K, Pfeffer MA, et al. Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the Candesartan in Heart failure: assessment of Reduction in Mortality and morbidity (CHARM) program. Am Heart J. 2006;151:985-91.
- 151. Jibrini MB, Molnar J, Arora RR. Prevention of atrial fibrillation by way of abrogation of the renin-angiotensin system: a systematic review and meta-analysis. Am J Ther. 2008;15:36-43.
- 152. Liakopoulos OJ, Choi YH, Kuhn EW, et al. Statins for prevention of atrial fibrillation after cardiac surgery: a systematic literature review. J Thorac Cardiovasc Surg. 2009;138:678-86.
- 153. Patti G, Chello M, Candura D, et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation. 2006;114:1455-61.
- 154. Goette A, Schon N, Kirchhof P, et al. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. Circ Arrhythm Electrophysiol. 2012;5:43-51.
- 155. Calkins H, Reynolds MR, Spector P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ Arrhythm Electrophysiol. 2009;2:349-61.
- 156. Bonanno C, Paccanaro M, La VL, et al. Efficacy and safety of catheter ablation versus antiarrhythmic drugs for atrial fibrillation: a meta-analysis of randomized trials. J Cardiovasc Med (Hagerstown). 2010;11:408-18.
- 157. Nair GM, Nery PB, Diwakaramenon S, et al. A systematic review of randomized trials comparing radiofrequency ablation with antiarrhythmic medications in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20:138-44.
- 158. Parkash R, Tang AS, Sapp JL, et al. Approach to the catheter ablation technique of paroxysmal and persistent atrial fibrillation: a meta-analysis of the randomized controlled trials. J Cardiovasc Electrophysiol. 2011;22:729-38.

- 159. Piccini JP, Lopes RD, Kong MH, et al. Pulmonary vein isolation for the maintenance of sinus rhythm in patients with atrial fibrillation: a meta-analysis of randomized, controlled trials. Circ Arrhythm Electrophysiol. 2009;2:626-33
- 160. Jais P, Cauchemez B, Macle L, et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation. 2008;118:2498-505.
- 161. Wilber DJ, Pappone C, Neuzil P, et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;303:333-40.
- 162. Stabile G, Bertaglia E, Senatore G, et al. Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (Catheter Ablation For The Cure Of Atrial Fibrillation Study). Eur Heart J. 2006;27:216-21.
- 163. Oral H, Pappone C, Chugh A, et al. Circumferential pulmonary-vein ablation for chronic atrial fibrillation. N Engl J Med. 2006;354:934-41.
- 164. Mont L, Bisbal F, Hernandez-Madrid A, et al. Catheter ablation vs. antiarrhythmic drug treatment of persistent atrial fibrillation: a multicentre, randomized, controlled trial (SARA study). Eur Heart J. 2013.
- 165. Wazni OM, Marrouche NF, Martin DO, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA. 2005;293:2634-40.
- 166. Morillo C, Verma A, Kuck K, et al. Radiofrequency Ablation vs Antiarrhythmic Drugs as First-Line Treatment of Symptomatic Atrial Fibrillation: (RAAFT 2): A randomized trial. (IN PRESS). JAMA. 2014.
- 167. Cosedis NJ, Johannessen A, Raatikainen P, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012;367:1587-95.
- 168. Haissaguerre M, Hocini M, Sanders P, et al. Catheter ablation of long-lasting persistent atrial fibrillation: clinical outcome and mechanisms of subsequent arrhythmias. J Cardiovasc Electrophysiol. 2005;16:1138-47.
- 169. Boersma LV, Castella M, van BW, et al. Atrial fibrillation catheter ablation versus surgical ablation treatment (FAST): a 2-center randomized clinical trial. Circulation. 2012;125:23-30.
- 170. Maron BJ, Olivotto I, Bellone P, et al. Clinical profile of stroke in 900 patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;39:301-7.
- 171. Olivotto I, Cecchi F, Casey SA, et al. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation. 2001;104:2517-24.
- 172. Bunch TJ, Munger TM, Friedman PA, et al. Substrate and procedural predictors of outcomes after catheter ablation for atrial fibrillation in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2008;19:1009-14.
- 173. Di DP, Olivotto I, Delcre SD, et al. Efficacy of catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: impact of age, atrial remodelling, and disease progression. Europace. 2010;12:347-55.
- 174. Gaita F, Di DP, Olivotto I, et al. Usefulness and safety of transcatheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2007;99:1575-81.
- 175. Kilicaslan F, Verma A, Saad E, et al. Efficacy of catheter ablation of atrial fibrillation in patients with hypertrophic obstructive cardiomyopathy. Heart Rhythm. 2006;3:275-80.
- 176. Blomstrom-Lundqvist C, Scheinman MM, Aliot EM, et al. ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias--executive summary. a report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to develop guidelines for the management of patients with supraventricular arrhythmias) developed in collaboration with NASPE-Heart Rhythm Society. J Am Coll Cardiol. 2003;42:1493-531.
- 177. Boriani G, Biffi M, Frabetti L, et al. Ventricular fibrillation after intravenous amiodarone in Wolff-Parkinson-White syndrome with atrial fibrillation. Am Heart J. 1996;131:1214-6.
- 178. Kim RJ, Gerling BR, Kono AT, et al. Precipitation of ventricular fibrillation by intravenous diltiazem and metoprolol in a young patient with occult Wolff-Parkinson-White syndrome. Pacing Clin Electrophysiol. 2008;31:776-9.
- 179. Simonian SM, Lotfipour S, Wall C, et al. Challenging the superiority of amiodarone for rate control in Wolff-Parkinson-White and atrial fibrillation. Intern Emerg Med. 2010;5:421-6.
- 180. Balser JR, Martinez EA, Winters BD, et al. Beta-adrenergic blockade accelerates conversion of postoperative supraventricular tachyarrhythmias. Anesthesiology. 1998;89:1052-9.
- 181. Tamariz LJ, Bass EB. Pharmacological rate control of atrial fibrillation. Cardiol Clin. 2004;22:35-45.
- 182. Lewis RV, McMurray J, McDevitt DG. Effects of atenolol, verapamil, and xamoterol on heart rate and exercise tolerance in digitalised patients with chronic atrial fibrillation. J Cardiovasc Pharmacol. 1989;13:1-6.
- 183. Hunt SA, Abraham WT, Chin MH, et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2009;53:e1-e90.

- 184. Roberts SA, Diaz C, Nolan PE, et al. Effectiveness and costs of digoxin treatment for atrial fibrillation and flutter. Am J Cardiol. 1993;72:567-73.
- 185. Segal JB, McNamara RL, Miller MR, et al. The evidence regarding the drugs used for ventricular rate control. J Fam Pract. 2000;49:47-59.
- 186. Feld GK, Fleck RP, Fujimura O, et al. Control of rapid ventricular response by radiofrequency catheter modification of the atrioventricular node in patients with medically refractory atrial fibrillation. Circulation. 1994;90:2299-307.
- 187. Williamson BD, Man KC, Daoud E, et al. Radiofrequency catheter modification of atrioventricular conduction to control the ventricular rate during atrial fibrillation. N Engl J Med. 1994;331:910-7.
- 188. Khan MN, Jais P, Cummings J, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med. 2008;359:1778-85.
- 189. Nerheim P, Birger-Botkin S, Piracha L, et al. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation. 2004;110:247-52.
- 190. Gentlesk PJ, Sauer WH, Gerstenfeld EP, et al. Reversal of left ventricular dysfunction following ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:9-14.
- 191. Crystal E, Garfinkle MS, Connolly SS, et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst Rev. 2004;CD003611.
- 192. Yoshioka I, Sakurai M, Namai A, et al. Postoperative treatment of carvedilol following low dose landiolol has preventive effect for atrial fibrillation after coronary artery bypass grafting. Thorac Cardiovasc Surg. 2009;57:464-7
- 193. Davis EM, Packard KA, Hilleman DE. Pharmacologic prophylaxis of postoperative atrial fibrillation in patients undergoing cardiac surgery: beyond beta-blockers. Pharmacotherapy. 2010;30:749, 274e-749, 318e.
- 194. Koniari I, Apostolakis E, Rogkakou C, et al. Pharmacologic prophylaxis for atrial fibrillation following cardiac surgery: a systematic review. J Cardiothorac Surg. 2010;5:121.
- 195. Hilleman DE, Hunter CB, Mohiuddin SM, et al. Pharmacological management of atrial fibrillation following cardiac surgery. Am J Cardiovasc Drugs. 2005;5:361-9.
- 196. Daoud EG, Strickberger SA, Man KC, et al. Preoperative amiodarone as prophylaxis against atrial fibrillation after heart surgery. N Engl J Med. 1997;337:1785-91.
- 197. Guarnieri T, Nolan S, Gottlieb SO, et al. Intravenous amiodarone for the prevention of atrial fibrillation after open heart surgery: the Amiodarone Reduction in Coronary Heart (ARCH) trial. J Am Coll Cardiol. 1999;34:343-7.
- 198. Mitchell LB, Exner DV, Wyse DG, et al. Prophylactic Oral Amiodarone for the Prevention of Arrhythmias that Begin Early After Revascularization, Valve Replacement, or Repair: PAPABEAR: a randomized controlled trial. JAMA. 2005;294:3093-100.
- 199. VanderLugt JT, Mattioni T, Denker S, et al. Efficacy and safety of ibutilide fumarate for the conversion of atrial arrhythmias after cardiac surgery. Circulation. 1999;100:369-75.
- 200. Al-Khatib SM, Hafley G, Harrington RA, et al. Patterns of management of atrial fibrillation complicating coronary artery bypass grafting: Results from the PRoject of Ex-vivo Vein graft ENgineering via Transfection IV (PREVENT-IV) Trial. Am Heart J. 2009;158:792-8.
- 201. Shepherd J, Jones J, Frampton GK, et al. Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation. Health Technol Assess. 2008;12:iii-95.
- 202. Imazio M, Brucato A, Ferrazzi P, et al. Colchicine reduces postoperative atrial fibrillation: results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) atrial fibrillation substudy. Circulation. 2011;124:2290-5.

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation—ONLINE AUTHOR LISTING OF COMPREHENSIVE RELATIONSHIPS WITH INDUSTRY AND OTHERS (April 2012)

Committee Member	Employment	Consultant	Speaker's Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness
Craig T. January (Chair)	University of Wisconsin-Madison— Professor of Medicine, Cardiovascular Medicine Division	None	None	• Cellular Dynamics International	None	None	None
L. Samuel Wann (Vice Chair)	Columbia St. Mary's Cardiovascular Physicians—Clinical Cardiologist	United Healthcare	None	None	None	None	None
Joseph S. Alpert	University of Arizona Health Sciences Center—Professor of Medicine	Bayer Pharmaceuticals (DSMB)† Boehringer Ingelheim Daiichi-Sankyo Duke Clinical Research Institute (DSMB) Janssen Pharmaceuticals (DSMB) Exeter CME Johnson & Johnson MedIQ NACCME—CME Co. Omnia Education Provera Education Co. Roche Diagnostics Sanofi-aventis Servier Pharmaceuticals	None	None	None	None	• Plaintiff, Accidental death-IHD, 2011
Hugh Calkins	Johns Hopkins Hospital—Professor of Medicine, Director of Electrophysiology	 Atricure Biosense Webster Carecore Endosense iRhythm Medtronic* Sanofi-aventis 	None	None	None	None	 Defendant, Syncope, 2011 Defendant, SCD, 2012
Joaquin E. Cigarroa	Oregon Health & Science University— Clinical Professor; Clinical Chief of Cardiology	Edwards Lifesciences	None	None	None	 Bracco Diagnostics, IOP-118 (Co-PI) Oregon Health & Science University† GE Healthcare, GE- 	Defendant, Coronary artery disease review, 2011

						145-002 (Co-PI) • GE Healthcare,	
						VSCAN (Co-PI) • Genentech, MLDL1278A (Co-PI)	
						• GlaxoSmithKline— SOLID-TIMI52 (Co- PI)	
						• Harvard Clinical Research Institute— DAPT (Co-PI)	
						 Hoffman LaRoche— ALECARDIO (Co- PI) Osiris Therapeutics— 	
						Prochymal (Co-PI)	
Joseph C. Cleveland	University of Colorado—Professor of Surgery; Denver Veteran's Administration Hospital—Chief, Cardiac Surgery	 Baxter Biosurgery Center for Personalized Education for Physicians Sorin 	None	None	Heartware Corp.	None	None
Jamie B. Conti	University of Florida—Professor of Medicine; Division of Cardiovascular Medicine—Chief	None	None	None	 Boston Scientific* Medtronic* St. Jude Medical* 	Boston Scientific*Medtronic*St. Jude Medical*	None
Patrick T. Ellinor	Massachusetts General Hospital Heart Center, Cardiac Arrhythmia Service—Director	None	None	None	• NIH	None	None
Michael D. Ezekowitz	Jefferson Medical College— Professor	 ARYx Therapeutics* AstraZeneca Boehringer Ingelheim* Bristol-Myers Squibb* Daiichi-Sankyo* Eisai Gilead* Janssen Scientific 	None	None	• ARYx Therapeutics* • Boehringer Ingelheim* • Daiichi-Sankyo† • Portola†	None	None
		Affairs* • Johnson & Johnson* • Medtronic* • Merck*					

Michael E. Field	University of Wisconsin School of Medicine and Public Health—Assistant Professor of Medicine,	 Pfizer* Portola* Pozen Sanofi-aventis* None 	None	None	None	None	None
Katherine T. Murray	Director of Cardiac Arrhythmia Service Vanderbilt University School of Medicine, Divisions of Clinical Pharmacology and Cardiology— Professor of Medicine	Medtronic	None	None	• GlaxoSmithKlei ne† • Merck • NIH*	None	 Defendant, Causation for SCD, 2011 Defendant, Causation for atrial fibrillation,
Ralph L. Sacco	University of Miami, Miller School of Medicine, Department of Neurology— Chairman	• Boehringer Ingelheim†‡	None	None	• NIH • DCRI (DSMB)	• АНА†	2012 None
William G. Stevenson	Brigham & Women's Hospital, Cardiac Arrhythmia Program—Director; Harvard Medical School—Professor of Medicine	None	None	• Biosense Webster†— Needle Ablation Patent	• Biosense Webster† • NIH	CIHR Circulation— Arrhythmia and EP (Editor)* Gynecologic Cancer Intergroup	None
Patrick J. Tchou	Cleveland Clinic Foundation—Section of Cardiac Electrophysiology and Pacing, Department of Cardiovascular Medicine Heart and Vascular Institute	None	None	None	None	Medtronic St. Jude Medical†	• Defendant, Appropriatene ss of syncope evaluation, 2011
Cynthia M. Tracy	George Washington University Medical Center—Associate Director and Professor of Medicine	None	None	None	• NIH	• Cheney Cardiovascular Institute—Board of Trustees†	None
Clyde W. Yancy	Northwestern University, Feinberg School of Medicine— Magerstadt Professor	None	None	None	None	Patient Centered Outcomes Research Institute†	None

of Medicine; Division			
of Cardiology—Chief			

This table represents all relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$10,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

‡Dr. Sacco's relationship with Boehringer Ingelheim was added just after final balloting of the recommendations and prior to organizational review, so it was not relevant during the writing or voting stages of the guideline's development.

AHA indicates American Heart Association; CIHR, Canadian Institutes for Health Research; CME, continuing medical education; DSMB, Data Safety Monitoring Board; IHD, ischemic heart disease; and PI, principal investigator; and SCD, sudden cardiac death.

^{*}Indicates significant relationship.

[†]No financial benefit.

<u>2014 AHA/ACC/HRS Atrial Fibrillation Guideline Data Supplements</u> (Section numbers correspond to the full-text guideline.)

Table of Contents

Oata Supplement 1. Electrophysiologic Mechanisms in the Initiation and Maintenance of AF (Section 2)	2
Data Supplement 2. Pathophysiologic Mechanisms Generating the AF Substrate (Section 2)	2
Data Supplement 3. Oral Anticoagulants (Dabigatran, Rivaroxaban, Apixaban) vs. Warfarin (Section 4.2.2)	
Data Supplement 4. Warfarin vs. Control (Section 4.2)	6
Data Supplement 5. Warfarin vs. Antiplatelet Therapy (Section 4.2)	7
Data Supplement 6. Beta Blockers (Sections 5.1.1)	9
Data Supplement 7. Nondihydropyridine Calcium Channel Blockers (Sections 5.1.2)	10
Data Supplement 8. Digoxin (Sections 5.1.3)	11
Data Supplement 9. Other Pharmacological Agents for Rate Control (Sections 5.1.4)	12
Data Supplement 10. AV Junction Ablation (Sections 5.2)	13
Data Supplement 11. Broad Considerations in Rate Control (Sections 5.3.1)	13
Data Supplement 12. Antiarrhythmic Drug Therapy (Section 6.2.1)	14
Data Supplement 13. Outpatient Initiation of Antiarrhythmic Drug Therapy (Section 6.2.1.2)	24
Data Supplement 14. Upsteam Therapy (Section 6.2.2)	25
Data Supplement 15. AF Catheter Ablation to Maintain Sinus Rhythm (Section 6.3)	27
Data Supplement 16. Meta-Analyses and Surveys of AF Catheter Ablation (Section 6.3)	30
Data Supplement 17. Specific Patient Groups (Section 7)	31
References	37

1

Data Supplement 1. Electrophysiologic Mechanisms in the Initiation and Maintenance of AF (Section 2)

Mechanism	Re	ferences
Wechanish	Experimental	Human
Multiple wavelet hypothesis	(1-3)	(4-8)
 Heterogeneity in atrial electrophysiology 	(3, 9)	(10-13)
Focal firing	(14-17)	(18-21)
Pulmonary vein foci		
 Electrophysiology 	(16, 22-28)	(29, 30)
 Evidence for reentry 	(24, 31-33)	(30, 34-36)
 Evidence for focal firing 	(32)	(35)
Nonpulmonary vein foci	(17)	(19, 21, 37-42)
Rotor with fibrillatory conduction	(9, 31-33, 43-46)	(34-36, 47-50)
 Dominant frequency gradients 	(9, 32, 43, 46, 51)	(34, 49-52)

AF indicates atrial fibrillation.

Data Supplement 2. Pathophysiologic Mechanisms Generating the AF Substrate (Section 2)

Mechanism	Ref	erences			
Wechanism	Experimental	Human			
Atrial structural abnormalities	(9, 53-55)	(56-62)			
 Fibrosis 	(63-70)	(55, 56, 62, 63, 71-73)			
 Noninvasive imaging of fibrosis 	(74, 75)	(76-79)			
Inflammation/oxidative stress	(80-83)	(59, 80, 82-88)			
 Steroids 	(89-91)	N/A			
Statins	(92-94)	N/A			
Omega-3 polyunsaturated fatty acids	(95-100)	(96, 101-103)			
Renin-angiotensin-aldosterone system activation	(104-114)	(72, 115, 116)			
Aldosterone	(117, 118)	(119-121)			
 Transforming growth factor-β₁ 	(68, 122, 123)	N/A			
Autonomic nervous system	(3, 14-16, 27, 124-126)	(127-129)			
Genetic variants	See S	ection 7.10			
Atrial tachycardia remodeling					
 Electrophysiologic 	(9, 130-136)	(137, 138)			
Structural	(53, 132, 139-142)	N/A			
Intracellular calcium	(143-145)	(145-148)			
Extracardiac factors	See Section 2.2				

AF indicates atrial fibrillation.

Data Supplement 3. Oral Anticoagulants (Dabigatran, Rivaroxaban, Apixaban) vs. Warfarin (Section 4.2.2)

Study Name, Author, Year	Study Aim	Study Type/Size (N)	Intervention vs. Comparator (n)	Patient P	opulation	Study Intervention	,	Endpoints		P Values, OR: HR: RR: & 95% CI:	Adverse Events	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results			
RE-LY Randomized Connolly SJ, et al., 2009 (149) 19717844	To compare 2 fixed doses of dabigatran with open-label use of warfarin in pts with AF at increased risk of stroke	RCT, open-label, blinded doses of dabigatran (18,113)	Dabigatran 110 mg (6,015) Dabigatran 150 mg (6,076) Warfarin (6,021)	AF and ≥1 of the following: prior stroke or TIA; LVEF<40%, NYHA class II or higher HF Sx, age ≥75 y or an age of 65-74 y plus DM, HTN, or CAD Mean CHADS2 of 2.1	Severe heart-valve disorder, stroke within 14 d or severe stroke within 6 mo, condition that increased hemorrhag e risk, CrCl <20 mL/min, active liver disease, pregnancy	Dabigatran in 2 fixed doses – oral prodrug, direct competitive inhibitor of thrombin Warfarin INR 2-3, mean TTR 64%	Dabigatran1 10 mg 1.53%/y Dabigatran 150 mg 1.11%/y Warfarin 1.69%/y	Major Hemorrhage Dabigatran 110 mg 2.71%/y Dabigatran 150 mg 3.11%/y Warfarin 3.36%/y Intracranial Bleeding Dabigatran 110 mg 0.23%/y Dabigatran 150 mg 0.30%/y Warfarin 0.74%/y Major Gl	Dabigatran 110 mg 1.44%/y Dabigatran 150 mg 1.01%/y Warfarin 1.57%/y Stroke, ST elevation, PE, MI, death, or major bleeding Dabigatran 110 mg 7.09%/y Dabigatran 150 mg 6.91%/y Warfarin 7.64%/y	Dabigatran 110 mg RR: 0.91; 95% CI: 0.74- 1.11; p<0.001 for noninferiority, p=0.34 for superiority Dabigatran 150 mg RR: 0.66; 95% CI: 0.53- 0.83; p<0.001 for noninferiority, p<0.001 for superiority	Dyspepsia	Median duration of FU 2 y

ROCKET-AF Patel MR, et al., 2011 (150) 21830957	To compare QD oral rivaroxaban with dose-adjusted warfarin for the prevention of stroke and SE in pts with NVAF who were at moderate to high risk of stroke	RCT, double- dummy, double- blinded (14,264)	Rivaroxaban (7,131) Warfarin (7,133)	NVAF at moderate to high risk of stroke: Hx of stroke, TIA, or SE or ≥2 of the following (HF or LVEF<35%, HTN, age >75 y, DM (CHADS2 score of≥2) Mean CHADS2 score of 3.5	Severe valvular disease, transient AF caused by a reversible disorder, hemorrhag e risk related criteria; severe, disabling stroke within 3 mo or any stroke within 14 d, TIA within 3 d; indication for anticoagula nt Tx	Rivaroxaban Factor Xa inhibitor, 20 mg QD or 15 mg QD for those with CrCl of 39- 40 mL/min Warfarin INR 2-3, mean TTR 55%	Any stroke or SE Per-protocol as treated Rivaroxaban 1.7%/y Warfarin 2.2%/y Intention to Treat Rivaroxaban 2.1%/y Warfarin 2.4%/y	Dabigatran 110 mg 1.12%/y Dabigatran 150 mg 1.51%/y Warfarin 1.02%/y Major and non-major clinically relevant bleeding Rivaroxaban 14.9/100 pt- years Warfarin 14.5/100 pt- years ICH Rivaroxaban 0.5/100 pt- years Warfarin 0.7/100 pt- years	Stroke, SE, or VD Rivaroxaba n 3.11/100 pt-years Warfarin 3.64/100 pt-years HR: 0.86; 95% CI: 0.74-0.99; p=0.034	Per-Protocol, as treated HR: 0.79; 95% CI: 0.66-0.96; p<0.001 for noninferiority Intention to treat HR: 0.88; 95% CI: 0.75-1.03; p<0.001 for noninferiority p=0.12 for superiority	N/A	Median duration of follow-up was 707 d Lower TTR in warfarin group 1° analysis was prespecified as a per- protocol analysis High-event rate after discontinuati on of Tx
---	---	---	--------------------------------------	---	--	--	---	--	---	--	-----	---

ARISTOTLE Granger CB, et al., 2011 (151) 21870978	To determine whether apixaban was noninferior to warfarin in reducing the rate of stroke (ischemic or hemorrhagic) or SE among pts with AF and ≥1 other risk factor for stroke	RCT, double- dummy, double- blinded (18,201)	Apixaban (9,120) Warfarin (9,081)	AF and ≥1 stroke risk factor (age >75 y; previous stroke, TIA or SE; symptomati c HF within the prior 3 mo or LVEF≤40%; DM; or HTN) Mean CHADS2 score of 2.1	AF due to a reversible cause, moderate or severe mitral stenosis, conditions other than AF requiring OAC, stroke within the prior 7 d, a need for ASA>165 mg or for ASA and CP, or severe renal insufficienc y (CrCl<25 mL/min)	Apixaban Factor Xa inhibitor 5 mg BID or 2.5 mg BID among pts with ≥2 of the following (≥80 y, body weight ≤60 kg, or serum Cr level of ≥1.5 mg/dL) Warfarin INR 2-3 Mean TTR 62.2%	Any stroke or SE Apixaban 1.27%/y Warfarin 1.6%/y	Major Bleeding Apixaban 2.13%/y Warfarin 3.09%/y ICH Apixaban 0.33%/y Warfarin 0.80%/y Major Gl Apixaban 0.76%/y Warfarin 0.86%/y	Stroke, SE, major bleeding, or death from any cause Apixaban 6.13%/y Warfarin 7.20%/y	HR: 0.79; 95% CI: 0.66- 0.95; p<0.001 for noninferiority, p=0.01 for superiority HR: 0.85; 95% CI: 0.78- 0.92; p<0.001	No difference s	Median duration of FU 1.8 y
AVERROES Connolly SJ, et al., 2011 (152) 21309657	To determine the efficacy and safety of apixaban, at a dose of 5 mg BID, as compared with ASA, at a dose of 81-324 mg QD, for the Tx of pts with AF for whom VKA Tx was considered unsuitable	RCT double- blind, double- dummy (5,559)	Apixaban (2,808) ASA (2,791)	≥50 y and AF and ≥1 of the following stroke risk factors: prior stroke or TIA, ≥75 y, HTN, DM, HF, LVEF≤35% , or PAD. Pts could not be receiving VKAs	Pts required long-term anticoagula tion, VD requiring surgery, a serious bleeding event in the previous 6 mo or a high-risk bleeding, stroke	Apixaban Factor Xa inhibitor 5 mg BID or 2.5 mg BID among pts with ≥2 of the following (age ≤80 y, body weight ≤60 kg, or serum Cr level of ≥1.5 mg/dL) ASA	Any stroke or SE Apixaban 1.6%/y ASA 3.7%/y p<0.001	Major Bleeding Apixaban 1.4% ASA 1.2% Intracranial Bleeding Apixaban 0.4% ASA 0.4% Major Gl	Stroke, SE, MI, VD or major bleeding event Apixaban 5.3%/y ASA 7.2%/y HR: 0.74; 95% CI: 0.60–0.90; p<0.003	HR: 0.45; 95% Cl: 0.32- 0.62; p<0.001	No difference s	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

		because it	within the	81-325	Apixaban		
		had already	previous 10	mg/dL	0.4%		
		been	d, severe		ASA		
		demonstrat	renal		0.4%		
		ed to be	insufficienc				
		unsuitable	y (a				
		or because	sCr>2.5				
		it was	mg/dL) or				
		expected to	a				
		be	calculated				
		unsuitable.	CrCl<25				
			mL/min				
		Mean					
		CHADS2 of					
		2.0					

^{1°} indicates primary; AF, atrial fibrillation; ARISTOTLE, Apixaban for Reduction in Stroke and Other Thromboembolic Events in AF; ASA, aspirin; AVERROES, Apixaban Versus Acetylsalicylic Acid to Prevent Stroke in Atrial Fibrillation Patients Who Have Failed or Are Unsuitable for Vitamin K Antagonist Treatment; BID, twice daily; CAD, coronary artery disease; CHADS2, Congestive heart failure, Hypertension, Age 75 years, Diabetes mellitus, Stroke; CP, codeine phosphate; Cr, creatinine; CrCl, creatinine clearance; DM, diabetes mellitus; FU, follow-up; GI, gastrointestinal; HF, heart failure; HR, hazard ratio; HTN, hypertension; Hx, history; ICH, intracranial hemorrhage; INR, international normalized ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; PAD, peripheral arterial disease; PE, pulmonary embolism; N/A, not applicable; NVAF, nonvalvular atrial fibrillation; NYHA, New York Heart Association; OAC, oral anticoagulation; pts, patient; QD, once daily; RCT, randomized controlled trial; RE-LY, Randomized Evaluation of Long-Term Anticoagulation Therapy; ROCKET-AF, Rivaroxaban Once Daily Oral Direct Factor Xa Inhibitor Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial; RR, relative risk; sCr, serum creatinine; SE, systemic embolism; Sx, symptom; TIA, transient ischemic attack; TTR, time in therapeutic range; Tx, therapy; VD, valvular disease; and VKA, vitamin K antagonist.

Data Supplement 4. Warfarin vs. Control (Section 4.2)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs.	Patient F	Patient Population			Endpoints		P Values, OR: HR: RR: &
			Comparator (n)	Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results	95% CI:
Aguilar MI, et al., 2005 (153) 16034869	To characterize the efficacy and safety of oral anticoagulants for the 1° prevention of stroke in pts with chronic AF	Cochrane Collaboration Systematic Review (AFASAK I, BAATAF, CAFA, SPAF I, SPINAF)	2,313 pts Warfarin 1,154 PC 1,159	AF (intermittent or sustained)	Prior stroke or TIA, mitral stenosis or prosthetic cardiac valves	Oral VKAs (warfarin) mean INR 2.0- 2.6	All Stroke (ischemic or ICH) Warfarin 27 PC 71	ICH, Major extracranial bleeds ICH, Warfarin 5, PC 2 Extracranial bleeds, Warfarin	Stroke, MI or VD Warfarin 69 PC 118	All ischemic stroke or ICH OR: 0.39; 95% CI: 0.26-0.59 Ischemic stroke OR: 0.34; 95% CI: 0.23-0.52

[©] American College of Cardiology Foundation and American Heart Association, Inc.

				17, PC 16	Stroke, MI, VD OR: 0.57; 95% CI: 0.42-0.77
					All ICH OR: 2.38; 95% CI: 0.54-10.50)
					Major extracranial bleeds OR: 1.07; 95% CI: 0.53-2.12

^{1°} indicates primary; AF, atrial fibrillation; AFASAK, Atrial Fibrillation, Aspirin and Anticoagulant Therapy Study; BAATAF, Boston Area Anticoagulation Trial for Atrial Fibrillation; CAFA, Canadian Atrial Fibrillation Anticoagulation; ICH, intracranial hemorrhage; INR, international normalized ratio; MI, myocardial infarction; N/A, not applicable; OR, odds ratio; PC, placebo; Pts, patients; RR, relative risk; SPAF I, Stroke Prevention in Atrial Fibrillation Study; SPINAF, Stroke Prevention in Atrial Fibrillation; TIA, transient ischemic attack; VD, vascular death; and VKA, vitamin K antagonist.

Data Supplement 5. Warfarin vs. Antiplatelet Therapy (Section 4.2)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Population		Study Intervention	Endpoints			P Values, OR: HR: RR: & 95% CI:	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results		
Aguilar MI, et al., 2007 (154) <u>17636831</u>	To characterize the relative effect of long-term oral anticoagulant Tx compared with antiplatelet Tx in pts with AF and no Hx of stroke or TIA	Cochrane Collaboration Systematic Review (ACTIVE-W, AFASAK I, AFASAK II, ATHENS, NASPEAF, PATAF, SPAF IIa, SPAF IIb,	9,598 pts OAC 4,815 Antiplatelet 4,783	AF (intermitten t or sustained)	Prior stroke or TIA, mitral stenosis or prosthetic cardiac valves	Adjusted dose warfarin or other coumarins; antiplatelet therapies	All Stroke (ischemic or ICH) OAC 132/4,815 Antiplatelet 190/4,783	ICH, major extracranial bleeds	Stroke, MI, or VD	All Stroke OR: 0.68; 95% CI: 0.54-0.85; p=0.00069 Ischemic stroke OR: 0.53; 95% CI: 0.41-0.69 ICH OR: 1.98; 95% CI: 1.20-3.28 Major Extracranial OR: 0.97; 95% CI: 0.74-1.28	N/A

 $[\]hbox{$\mathbb C$}$ American College of Cardiology Foundation and American Heart Association, Inc.

_	Г	T	ı	1	1	T	T	T	I	1	1
										Major Extracranial (exclude ACTIVE W with CP+A) OR: 1.90; 95% CI: 1.07-3.39 Stroke, MI, 485 VD OR: 0.74; 95% CI:	
Saxena R, et al., 20 <u>11</u> (155) 15494992	To compare the value of anticoagulants and antiplatelet Tx for the long term prevention of recurrent vascular events in pts with non-rheumatic AF and previous TIA or minor ischemic stroke	Cochrane Collaboration Systematic Review (EAFT, SIFA)	1,371 pts, warfarin 679, antiplatelet 692	AF and prior minor stroke or TIA	Rheumatic VD	Oral VKAs (warfarin) mean INR>2.0; Antiplatelets 300 mg ASA; indobufen 200 mg BID	All major vascular events (VD, recurrent stroke, MI, or SE)	Any ICH; major extracranial bleed	All fatal or nonfatal recurrent strokes	0.61-0.90 All Major Vasc Events OR: 0.67; 95% CI: 0.50-0.91 Recurrent Stroke OR: 0.49; 95% CI: 0.33-0.72 Any ICH OR: 1.99; 95% CI: 0.40-9.88 Major Extracranial bleed OR: 5.16; 95% CI: 2.08-12.83	N/A
Mant J, et al., 2007 BAFTA (156) 17693178	To compare the efficacy of warfarin with that of ASA for the prevention of fatal and nonfatal stroke, ICH, and other clinically significant arterial embolism in a 1° care	RCT (973 pts)	973 pts, ASA 485, warfarin 488	Age ≥75 y, AF or flutter by EKG within 2 y from 1° care practices	Rheumatic heart disease, a major nontraumatic hemorrhage within 5 y, ICH, documented peptic ulcer disease within the previous year, esophageal varices,	ASA 75 mg QD; Warfarin target INR 2.5, range 2- 3	Fatal or nonfatal disabling stroke (ischemic or hemorrhagic), other ICH, or clinically significant arterial embolism Warfarin 24 (1.8%/y)	Hemorrhage Major extracranial Warfarin 18 (1.4%/y) ASA 20 (1.6%/y) All major hemorrhages Warfarin 25 (1.9%/y) ASA 25 (2.0%/y)	Major vascular events (stroke, MI, PE, VD) Warfarin 76 (5.9%/y) ASA 100 (8.1%/y) 1° events plus major hemorrhage Warfarin 39	RR: 0.48; 95% CI: 0.28-0.80; p=0.0027 Stroke RR: 0.46; 95% CI: 0.26-0.79; p=0.003 All major hemorrhages RR: 0.96; 95% CI: 0.53-1.75; p=0.90 Major vascular	Open-label with blind assessment s 67% of the warfarin group remained on Tx TTR was 67%

[©] American College of Cardiology Foundation and American Heart Association, Inc.

population of	allergic		(3.0%/y)	events (stroke, MI,
pts aged ≥75	hypersensitivi	t ASA 48	ASA 64	PE, VD)
y who had AF	y to study	(3.8%/y)	(5.1%/y)	RR: 0.73; 95% CI:
	drugs,			0.53-0.99; p=0.03
	terminal			·
	illness,			1° events plus
	surgery within			major hemorrhage
	the last 3 mo,			RR: 0.59; 95% CI:
	BP>180/110			0.38-0.89; p=0.008

^{1°} indicates primary; AF, atrial fibrillation; ACTIVE-W, Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events-W; AFASAK, Atrial Fibrillation, Aspirin and Anticoagulant Therapy Study; ATHENS, Primary Prevention of Arterial Thromboembolism in the Oldest Old with Atrial Fibrillation; BID, twice daily; BP, blood pressure; EAFT, European Atrial Fibrillation Trial; EKG, electrocardiogram; Hx, history; ICH, intracranial hemorrhage; MI, myocardial infarction; N/A, not applicable; NASPEAF, National Study for Prevention of Embolism in Atrial Fibrillation; PE, pulmonary embolism; pts, patients; QD, once daily; RR, relative risk; SE, systemic embolism; SIFA, Studio Italiano Fibrillazione Atriale; SPAF, Stroke Prevention in Atrial Fibrillation Study; TIA, transient ischemic attack; TTR, time in therapeutic range; Tx, therapy; and VD, vascular death.

Data Supplement 6. Beta Blockers (Sections 5.1.1)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Population		Study Intervention	ntervention			Adverse Events	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Secondary Endpoint & Results			
Abrams J, et al., 1985 (157) 3904379	Evaluation of the efficacy and safety of esmolol in comparing to propranolol for the acute control of SVT	Randomized prospective, multicenter double-blind	IV esmolol vs. IV propranolol	Pts over age 18 y with ventricular rates >120 bpm 2° to AF, atrial flutter, SVT, atrial tachycardia, idiopathic sinus tachycardia and AV reentrant tachycardias	WPW syndrome, hypotension, sick sinus syndrome, AV conduction delay decompensate d HF or noncardiac precipitated arrhythmias	Esmolol vs. propranolol	Composite endpoint of either ≥20% reduction from average baseline heart rate, reduction in heart rate to <100 bpm, or conversion to NSR esmolol 72% vs. propranolol 69%	N/A	No difference	Hypotensi on (esmolol 45% vs. propranol ol 18%)	Small sample size Only 66% of pts had AF
Farshi R, et al., 1999 (158) <u>9973007</u>	Comparison of the effects of 5 standard drug	Prospective, open-label crossover outpatient	N/A	Chronic AF pts who had a duration of ≥1 y	LVEF<0.35, WPW syndrome, sick sinus	Comparison of the effects of 5 standard drug	Comparison of 24 h mean ventricular rates	Peak ventricular response at 5 m of exercise:	p<0.01 for comparison of atenolol or atenolol and	N/A	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

regimen	S:		syndrome,	regimens:	Digoxin:	Digoxin:	digoxin	
digoxin,			pacemaker or	digoxin,	78.9±16.3	175±36	compared to	
diltiazen	۱,		clinically	diltiazem,	Diltiazem:	Diltiazem:	digoxin alone	
atenolol	,		significant	atenolol,	80.0±15	151±27		
digoxin	olus		renal, thyroid or	digoxin plus	Atenolol:	Atenolol:		
diltiazen	n, and		hepatic disease	diltiazem,	75.9±11.7	130±34		
digoxin	+			and digoxin	Digoxin +	Digoxin +		
atenolol	on			+ atenolol on	Diltiazem:	Diltiazem:		
the mea	n 24-			the mean 24-	67.3±14.1	146±40		
h heart	ate			h heart rate	Digoxin +	Digoxin +		
					atenolol:	atenolol:		
					65±9.4	126±29		

^{1°} indicates primary; 2°, secondary; AF, atrial fibrillation; AV, atrioventricular; HF, heart failure; HR, hazard ratio; IV, intravenous; LVEF, left ventricular ejection fraction; N/A, not applicable; NSR, normal sinus rhythm; pts, patients; SVT, supraventricular tachycardia; Tx, therapy; and WPW, Wolff-Parkinson-White.

Data Supplement 7. Nondihydropyridine Calcium Channel Blockers (Sections 5.1.2)

	nt 7. Nonainyaropy					A 1		B 17 1	A 4 I
Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Population		Study Intervention	Endpoints	P Values, OR: HR: RR: & 95% CI:	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results		
Ellenbogen KA, et al., 1991 (159) 1894861	To demonstrate the safety and efficacy of a continuous IV diltiazem infusion for 24 h heart rate control	Randomized, double-blind, parallel, PC- controlled	IV diltiazem vs. PC	Pts >18 y with AF or atrial flutter with duration >24 h and HR>120 bpm	Severe CHF, sinus node dysfunction, 2 nd or 3 rd degree AV block, WPW syndrome or hypotension	IV diltiazem vs. PC	Therapeutic response (ventricular response <100 bpm, ≥20% decrease in heart rate from baseline or conversion to NSR	p<0.001	Small sample size
Steinberg JS, et al., 1987 (160) 3805530	To determine the efficacy of diltiazem to control ventricular response at rest, during exercise, and during daily activities	Prospective, open-label	Oral diltiazem	Pts with chronic AF with a VR>100 bpm at 3 min of a standardized exercise test	UA, acute MI, WPW syndrome, hypotension, renal or hepatic failure, sick sinus syndrome without a pacemaker	Oral diltiazem	74% vs. 0% Ventricular response: Rest: 69±10 vs. 96±17 Exercise: 116±26 vs. 155±28+	p<0.001	Small sample size Most pts at entry were on digoxin and continued on digoxin

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Siu CW, 2009 et	To compare the	Randomized,	IV diltiazem vs.	Hospitalized pts	Ventricular	IV diltiazem vs.	VR control (<90	p<0.47	N/A
al., (161)	clinical efficacy of	prospective,	IV amiodarone	with symptomatic	response >200	IV amiodarone	bpm) within 24 h:		
<u>19487941</u>	IV diltiazem,	open-label	vs. IV digoxin	AF<48 h with	bpm, pre-excitation	vs. IV digoxin	ventricular		
	digoxin, and			ventricular	syndrome,		response <90 bpm		
	amiodarone for			response >120	hypotension, CHF,		sustained for ≥4 h		
	acute VR in			bpm	implanted				
	symptomatic AF				pacemaker/defibrill		Diltiazem 90% vs.		
					ator, recent MI, UA		amiodarone 74%		
					or stroke		vs. digoxin 74%		

AF indicates atrial fibrillation; AV, atrioventricular; CHF, congestive heart failure; IV, intravenous; MI, myocardial infarction; N/A, not applicable; NSR, normal sinus rhythm; PC, placebo; pts, patients; RR, relative risk; UA, unstable angina; VR, ventricular rate; and WPW, Wolff-Parkinson-White.

Data Supplement 8. Digoxin (Sections 5.1.3)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Population		Study Intervention	Intervention			Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Secondary Endpoint & Results		
IV Digoxin in Acute AF (162) 9129897	To examine the effects of IV digoxin in acute AF	Randomized, prospective, multicenter, double-blind PC-controlled	IV digoxin vs. PC	Pts >18 y with AF≤7d	Ongoing Tx with digoxin or antiarrhythmics, sick sinus syndrome or 2nd /3rd degree AV block without a pacemaker, WPW syndrome, heart rate <60 or >170 bpm, ongoing ischemia or recent MI	IV digoxin vs. PC	Conversion to sinus rhythm at 16 h Digoxin 46% vs. PC 51%	Effect on heart rate: 91.2±20 vs. 116.2±25	p=0.37 p<0.0001	N/A
AFFIRM Olshansky B, et al., 2004 (163) 15063430	To examine whether digoxin use was associated with adverse	Post hoc analysis	Nonrandomized comparison of digoxin vs. no digoxin	Pts with AF considered at high risk for stroke	N/A	Post hoc analysis including propensity analysis	Estimated HR of 1.41 for all- cause mortality for digoxin	Estimated HR of 1.61 for arrhythmic mortality Estimated HR	p<0.001 p<0.009 p<0.016	Post hoc analysis utilizing propensity scoring

 $[\]hbox{$\mathbb C$}$ American College of Cardiology Foundation and American Heart Association, Inc.

mortality and			of 1.35 for CV	
morbidity			mortality	

AF indicates atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; AV, atrioventricular; HR, hazard ratio; IV, intravenous; MI, myocardial infarction; N/A, not applicable; PC, placebo; pts, patients; RR, relative risk; Tx, therapy; and WPW, Wolff-Parkinson-White.

Data Supplement 9. Other Pharmacological Agents for Rate Control (Sections 5.1.4)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient P	opulation	Study Intervention		Endpoints		P Values, OR: HR: RR: & 95% CI:	Adverse Events
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results		
Delle Karth G, et al., 2001 (164) 11395591	To compare the efficacy of IV diltiazem bolus/infusion vs. IV amiodarone bolus vs. IV amiodarone bolus/infusion for immediate (4 h) and 24-h rate control during AF	Randomized prospective, controlled	IV diltiazem bolus/infusion vs. IV amiodarone bolus vs. IV amiodarone bolus/infusion	Critically ill pts with recent-onset AF with ventricular rate >120 bpm	N/A	IV diltiazem bolus/ infusion vs. IV amiodarone bolus vs. IV amiodarone bolus/infusio n	Sustained heart rate reduction ≥30% within 4 h 70% vs. 55% vs. 75%	Bradycardia or hypotension 35% vs. 0% vs. 5%	Uncontrolle d tachycardia 0% vs. 45% vs. 5%	1° endpoint: NS 2° endpoint p<0.00016 Safety endpoint p=0.01	N/A
Connolly SJ, et al., 2011 (165) 22082198	Assess impact of dronedarone on major vascular events in high-risk permanent AF	Randomized prospective, multicenter, double-blind, PC- controlled trial (3,236)	Dronedarone 400 mg po BID vs. PC	Permanent AF / flutter, age ≥65 y with ≥1 risk factor: CAD, CVA or TIA, CHF, LVEF≤0.40, PAD or age ≥75 y with HTN and DM	Paroxysmal or persistent AF, ICD, heart rate <50 bpm, QT interval corrected >500 ms	Dronedarone vs. PC	Composite of stroke, MI, SE, or CV death Composite of unplanned hospitalization for CV event/ death	N/A	N/A	HR: 2.29; 95% CI: 1.34- 3.94 HR: 1.95; 95% CI: 1.45- 2.62	Stroke HR: 2.32; 95% CI: 1.11-4.88 Unplanned hospitalizati on for CV event HR: 1.81; 95% CI: 1.44-2.70

^{1°} indicates primary; 2°, secondary; AF, atrial fibrillation; BID, twice daily; CAD, coronary artery disease; CHF, congestive heart failure; CV, cardiovascular; CVA, cerebrovascular accident; DM, diabetes mellitus; HR, hazard ratio; HTN, hypertension; ICD, implantable cardioverter defibrillator; IV, intravenous; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; PAD, peripheral artery disease; PC, placebo; po, orally; pts, patients; RR, relative risk; SE systemic embolism; and TIA, transient ischemic attack.

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Data Supplement 10. AV Junction Ablation (Sections 5.2)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Population		Study Intervention	Endpoints Primary Endpoint & Results	P Values, OR: HR: RR: & 95% CI:	Study Limitations
				Inclusion Criteria	Exclusion Criteria				
Ozcan C, et al., 2001 (166) 11287974	Assess effect of radio-frequency ablation of the AV node and implantation of a permanent pacemaker on long-term survival in pts with AF refractory to drug Tx	Observational single site	Comparison to 2 control populations Age/sex matched from minnesota population Consecutive pts with AF who received drug Tx	All pts who underwent AV nodal ablation and pacemaker implantation for medically refractory AF between 1990 and 1998	N/A	AV nodal ablation pacemaker compared to 2 control groups	No difference in survival between ablation/pacemaker group and control group treated with drugs Excess observed death in ablation/pacemaker group relative to age/sex matched population	N/A	Observation, nonrandomized trial

AF indicates atrial fibrillation; AV, atrioventricular; N/A, not applicable; pts, patients; RR, relative risk; and Tx, therapy.

Data Supplement 11. Broad Considerations in Rate Control (Sections 5.3.1)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient P	opulation	Study Intervention	Endpoints		P Values, OR: HR: RR: & 95% CI:	Adverse Events
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Secondary Endpoint & Results		
Van Gelder IC, et al., 2010 (167) 20231232	Lenient rate control is noninferior to strict rate control in permanent AF	Randomized, prospective, multicenter, open label N=614	Lenient rate control (resting heart rate <110) vs. strict rate control (resting heart rate <80)	Age <80 y, permanent AF, oral anticoagulan t or ASA Tx	N/A	N/A	Composite of CV death and morbidity at 12.9% vs. 14.9%	Death, components of 1° endpoint, Sx, and functional status	1° endpoint, 3 y, HR: 0.84; 95% CI: 0.58-1.21	HF (3.8% vs. 4.1%); HR: 0.97; 95% CI: 0.48-1.96 Stroke 1.6% vs. 3.9%, HR: 0.35; 95% CI: 0.13-0.92 CV death 2.9% vs. 3.9%, HR: 0.79; 95% CI: 0.38-1.65

^{1°} indicates primary; AF, atrial fibrillation; ASA, aspirin; CV, cardiovascular; HF, heart failure; HR, hazard ratio; N/A, not applicable; pts, patients; RACE, Rate Control Efficacy in Permanent Atrial Fibrillation; RR, relative risk; Sx, symptom; and Tx, therapy.

Data Supplement 12. Antiarrhythmic Drug Therapy (Section 6.2.1)

Study Name, Author, Year	Study Aim	Study Type/ Intervention Size (N) vs.	Patient Population	Endpoi	nts	Adverse Events	Comments	
Author, real		. ,	Comparator (n)		Primary Endpoint & Results	Secondary Endpoint & Results		
ADONIS, Singh BN, et al., 2007 (168) 17804843	To assess the efficacy of dronedarone in maintenance of SR in pts with AF	RCT, double- blind (625)	Dronedarone 400 mg BID (417) PC (208)	Age ≥21 y ≥1 episode AF in previous 3 mo	Time to the 1st recurrence of AF or atrial flutter Dronedarone 158 d PC 59 d (p=0.002)	Ventricular rate after recurrence, dronedarone 104.6 bpm PC 116.6 bpm (p<0.001).	N/A	Dronedarone was more effective than PC in maintaining SR and in reducing ventricular rate during recurrent AF
AFFIRM Substudy, 2003 (169) 12849654	To evaluate the efficacy of antiarrhythmic drugs for AF	RCT, open- label (410)	Amiodarone 200 mg/d vs. class I drug vs. sotalol	Substudy of pts randomized to rhythm control	1° – proportion at 1 y alive, on Tx drug, and in SR 62% amiodarone vs. 23% class I drug (p<0.001) 60% amiodarone vs. 38% sotalol (p=0.002) 34% sotalol vs. 23% class I drug (p=0.488)	N/A	AEs leading to drug discontinuation 12.3% amiodarone 11.1% sotalol 28.1% class I agent Amiodarone pulmonary toxicity 1.3% at 1 y and 2.0% at 2 y 1 case torsade de pointes - quinidine	Amiodarone more effective than sotalol or class I agent for SR without cardioversion AEs were common
Aliot E, et al., 1996 (170) 8607394	To assess the safety and efficacy of flecainide vs. propafenone in PAF or atrial flutter	RCT, open- label (97)	Flecainide 100- 200 mg/d (48) Propafenone 600 mg/d (49)	Inclusion: >18 y with symptomatic PAF or atrial flutter Exclusion: AF last >72 h, Hx of MI or UA, Hx of VT, Hx of HF (NYHA class III or IV), LVEF<35%, PR>280 ms, QRS>150 ms, sick sinus syndrome or AV block in absence of pacemaker	Probability of SR at 1 y 0.619 flecainide 0.469 propafenone (p=0.79)	N/A	8.5% flecainide group had neurologic side effects 16.7% propafenone group GI side effects	Flecainide and propafenone similar efficacy (although small sample size and open-label design) Nonsignificant trend toward higher sideeffects with propafenone

ANDROMEDA, Kober L, et al., 2008 (171) 18565860	To evaluate the efficacy of dronedarone in HF pts	RCT, double- blind (627)	Dronedarone (310) PC (317)	Age >18 y, hospitalized for HF, LVEF<35%, NYHA class III or IV (Did not require AF Dx, Hx of AF 37-40%)	Death from any cause or HF hospitalization 17.1% dronedarone 12.6% PC HR: 1.38; 95% CI: 0.92-2.09; p=0.12	N/A	Death 8.1% dronedarone 3.8% PC HR: 2.13; 95% CI: 1.07-4.25; p=0.03	Dronedarone is associated with increased mortality in pts with severe HF and reduced LVEF related to worsening of HF
ASAP, Page RL, et al., 2003 (172) 12615792	To assess the frequency of asymptomatic AF in pts treated with azimilide	RCT, double- blind (1,380)	Azimilide 35- 125 mg/d (891) PC (489)	Inclusion: Symptomatic AF in SR at time of randomization Exclusion: Rest angina or UA, class IV CHF, Hx of torsade de pointes, QTc >440 ms, resting SR<50 bpm	Time to 1st documented asymptomatic AF – no significant difference 40% reduction in asymptomatic AF episodes in the 100 mg or 125 mg azimilide group vs. PC (p=0.03)	N/A	N/A	N/A
ATHENA, Hohnloser SH, et al., 2009 (173) 19213680	N/A	RCT, double- blind (4,628)	Dronedarone 400 mg BID (2,301) PC (2,327)	Inclusion: AF (paroxysmal or persistent) and ≥1 of these: >70 y, HTN, DM, LVEF<40%, LAD>50 mm, Hx of TIA/stroke/embolism	1° – 1 st hospitalization due to CV event or death 31.9% dronedarone 39.4% PC HR: 0.76; p<0.001	Death due to any cause CV death CV hospitalization	N/A	N/A
Bellandi F, et al., 2001 (174) 11564387	To evaluate the long-term efficacy and safety of propafenone and sotalol for maintaining SR	RCT, double- blind (194)	Propafenone HCL 900 mg/d (102) Sotalol HCL 240 mg/d (106) PC (92)	≥18 y, recurrent AF (≥4 episodes previous 12 mo) and episode of AF at enrollment <48 h	Proportion of pts remaining in SR at 1 y FU 63% propafenone 73% sotalol 35% PC (p=0.001)	N/A	4% ventricular arrhythmia with sotalol Drug discontinuation due to AEs – 9% propafenone, 10% sotalol, 3% PC	Sotalol and propafenone appear to have similar efficacy and are superior to PC at maintaining SR at 1 y
Benditt DG, et al., 1999 (175) 10496434	To evaluate the efficacy of sotalol for maintaining of SR	RCT, double- blind (253)	Sotalol 80 mg BID (59) Sotalol 120 mg BID (63) Sotalol 160 mg	Inclusion: symptomatic AF or atrial flutter and SR at time of randomization Dose reduction in presence of renal dysfunction	Time to first recurrent symptomatic AF or atrial flutter after steady state (intention to treat) 27 d PC	Proportion of pts free of AF 12 mo 28% PC 30% sotalol 80 mg 40% sotalol 120	Bradycardia and fatigue most common AEs No cases of torsade de pointes in this study	Outpatient initiation in 27%

[©] American College of Cardiology Foundation and American Heart Association, Inc.

			BID (62) PC (69)	Exclusion: QT>450 ms, sinus rate <50, other QT prolonging drugs, renal failure (CrCl<40 mL/min), Hx of HF, uncorrected hypokalemia, asymptomatic AF, sick sinus syndrome without pacer, MI<2 mo,	106 d sotalol 80 mg 229 d sotalol 120 mg 175 d sotalol 160 mg	mg 45% sotalol 160 mg		
Byrne-Quinn E, et al., 1970 (176) 4911757	To evaluate the efficacy of quinidine for maintenance of SR	RCT, double- blind (65)	Quinidine 1.2 g/d (28) PC (37)	syncope, TIA/stroke Inclusion: Pts hospitalized for AF with plan for cardioversion Exclusion: digoxin stopped 24 h prior	Percentage of pts at FU in SR 24.3% PC 57% quinidine	N/A	1 death presumed related to quinidine	Small sample size, variable FU period (5-15 mo)
Carunchio A, et al., 1995 (177) 7642012	To evaluate the efficacy and safety of flecainide and sotalol for maintenance of SR	RCT, open- label (66)	Flecainide acetate 200 mg/d (20) Sotalol HCL 240 mg/d (20) PC (26)	N/A	Arrhythmia free survival at 12 mo 70% flecainide 60% sotalol 27% PC p=0.002 AAD vs. PC p=0.163 flecainide vs. sotalol	N/A	N/A	Flecainide and sotalol have similar efficacy in prevention of recurrence of AF Side effects common but serious AE uncommon in this FU period
Channer KS, et al., 2004 (178) 14720531	To evaluate the efficacy of amiodarone to prevent recurrent AF after cardioversion	RCT, double- blind (161)	Amiodarone (short-term) 200 mg/d for 8 wk after DCCV (62) Amiodarone (long-term) 200 mg/d for 52 wk after DCCV (61) PC (38)	Inclusion: Age >18 y and sustained AF>72 h Exclusion: LVEF<20%, significant valve disease, female <50 y, thyroid, lung or liver disease, contraindication to anticoagulation	Percentage in SR at 1 y 49% long-term amiodarone 33% short-term (8 wk after DCCV) amiodarone 5% PC	Spontaneous conversion to SR 21% amiodarone and 0% in PC SR rhythm at 8 wk after DCCV – 16% PC, 47% short-term amiodarone, 56% long-term amiodarone	AEs leading to discontinuation 3% PC 8% short-term amiodarone 18% long-term amiodarone	Amiodarone pre-Tx allows chemical cardioversion in 1/5 of pts with persistent AF and is more effective at maintaining SR after DCCV Given the long-term AEs with amiodarone, 8 wk of adjuvant Tx suggested as option by authors

CTAF, Roy D, et al., 2000 (179) 10738049	Low dose amiodarone would be more efficacious in preventing recurrent AF than sotalol or propafenone	RCT (403)	Amiodarone 200 mg/d (201) Sotalol 160 mg BID (101) Propafenone 150 QID (101)	Symptomatic AF within previous 6 mo but not persistent AF>6mo	Recurrence of AF during FU (mean 16 mo) 35% amiodarone 63% sotalol or propafenone (p<0.001)	N/A	AEs requiring drug discontinuation 18% amiodarone vs. 11% sotalol or propafenone group (p=0.06)	Amiodarone is more effective than sotalol or propafenone in preventing recurrent AF (with a trend toward higher sideeffects)
DAFNE, Touboul P, et al., 2003 (180) 12919771	To determine the most appropriate dose of dronedarone for prevention of AF after DCCV	RCT, double- blind (199)	Dronedarone 800 mg/d (54) Dronedarone 1,200 mg/d (54) Dronedarone 1600 mg/d (43) PC (48)	Inclusion: age 21-85 y, pts with persistent AF (>72 h and <12 mo) scheduled for DCCV Exclusion: Hx of torsade de pointes, QT>500 ms, severe bradycardia, AV block, NYHA class III or IV HF, LVEF<35, ICD, WPW syndrome	Time to first documented AF recurrence at 6 mo 60 d for dronedarone 400 mg BID 5.3 d for PC (p=0.001)	Spontaneous conversion of AF with dronedarone 5.8 to 14.8% pts	Premature discontinuation 22.6% 1600 mg, 3.9% 800 mg	Small sample size, dose-finding study
DIAMOND, Pedersen OD, et al., 2001 (181) 11457747	To evaluate the efficacy of dofetilide to maintain SR in pt with LV dysfunction	RCT, double- blind (506)	Dofetilide 500 mcg/d (249) PC (257)	Inclusion: Persistent AF associated with either HF or recent acute MI Dose reduction for renal insufficiency Exclusion: HR: <50 bpm, QTc>460 ms (500 ms with BBB), K<3.6 or >5.5, CrCI<20 mL/min	Probability of maintaining SR at 1 y 79% dofetilide 42% with PC (p<0.001)	No effect on all- cause mortality Dofetilide associated with reduced rate of rehospitalization	Torsade de pointes occurred in 4 dofetilide pts (1.6%)	N/A
DIONYSOS, Le Heuzey JY, et al., 2010 (182) 20384650	To evaluate the efficacy and safety of amiodarone and dronedarone in pts with persistent AF	RCT, double- blind (504)	Amiodarone 600 mg QD for 28 d then 200 mg QD (255) Dronedarone 400 mg BID (249)	Age ≥21 y with documented AF for >72 h for whom CV and AAD were indicated and oral anticoagulation	Recurrence of AF (including unsuccessful CV) or premature study discontinuation at 12 mo 75.1% dronedarone, 58.8% amiodarone, HR: 1.59; 95% CI: 1.28-1.98; p<0.0001	N/A	Drug discontinuation less frequent with dronedarone (10.4 vs. 13.3%). MSE was 39.3% and 44.5% with dronedarone and amiodarone, respectively, at 12 mo (HR: 0.80;	Dronedarone was less effective than amiodarone in decreasing AF recurrence, but had a better safety profile

_								
Dogan A, et	To evaluate the	RCT, Single-	Propafenone	Recent onset or persistent	Mainly driven by AF recurrence with dronedarone compared with amiodarone (63.5 vs. 42.0%) Percentage of AF	Spontaneous	95% CI: 0.60 to 1.07; p=0.129), and mainly driven by fewer thyroid, neurologic, skin, and ocular events in the dronedarone group Discontinuation due	Propafenone is more
al., 2004 (183) <u>15255456</u>	efficacy of propafenone for maintenance of SR after cardioversion	blind (110)	450 mg/d (58) PC (52)	AF Exclusion: MI, HF, CABG<6 mo, severe COPD, LA thrombus, thyroid disease, inability to consent to DCCV	recurrences at 15 mo 39% propafenone 65% PC	conversion with drug predicted lower chance of recurrence	to side effects: 4 pts on propafenone and 1 PC (p=0.36)	effective than PC for prevention of recurrent AF
EURIDIS, Singh BN, et al., 2007 (168) 17804843	To assess the efficacy of dronedarone in maintenance of SR in pts with AF	RCT, double- blind (612)	Dronedarone 400 mg BID (411) PC (201)	≥1 episode AF in previous 3 mo, Age ≥2y	Time to the 1st recurrence of AF or atrial flutter 96 d dronedarone 41 d in the PC (p=0.01)	After AF recurrence, mean rate=117.5 bpm, PC=102.3 bpm, dronedarone (p<0.001)	N/A	Dronedarone was more effective than PC in maintaining SR and in reducing ventricular rate during recurrent AF
FAPIS, Chimienti M, et al., 1996 (184) 8607393	To compare the safety of flecainide to propafenone for Tx of PAF	RCT, open- label (200)	Flecainide acetate 200 mg/d (97) Propafenone HCL 450-900 mg/d (103)	Paroxysmal AF without structural heart disease	Probability of remaining free of AEs at 12 mo 77% flecainide 75% propafenone 1 VT in propafenone group 2 accelerated ventricular response with flecainide	Drug discontinuation 4 flecainide 5 propafenone	N/A	AEs appear occur at similar rate with propafenone and flecainide in this population with AF and without evidence of structural disease
GEFACA, Galperin J, et al., 2001 (185) 11907636	To evaluate the efficacy of amiodarone for restoration and maintenance of SR	RCT, double- blind (50)	Amiodarone 200 mg/d (47) PC (48)	Persistent AF>2 mo duration Exclusion: paroxysmal AF, age >75 y, HR<50 bpm, LA>60 mm	Recurrent AF in 37% amiodarone and 80% PC group Spontaneous conversion 34% with amiodarone and 0% PC	N/A	AEs 15% of pts on amiodarone	Amiodarone restored SR in 1/3 pts, increased success of DCCV, reduced and delayed recurrence of AF

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Kalusche D, et al., 1994 (186) 7846939	To compare the efficacy of sotalol to a fixed combination of quinidine and verapamil	RCT, open- label (82)	Quinidine sulfate 1000 mg/d Sotalol HCL 240-400 mg/d	N/A	SR at 6 and 12 mo 75.7% and 67.3% quinidine/verapamil 63.4 and 49.9% sotalol p=NS	N/A	5 pts quinidine/verapamil discontinued Tx due to noncardiac AEs, 3 pts in sotalol discontinued due to bradycardia No proarrhythmia noted	N/A
Kochiadakis GE, et al., 2004 (187) 15589019	Compare the efficacy and safety of sotalol and propafenone for prevention of recurrent AF	RCT, single- blind (254)	Propafenone HCL 240 mg/d (86) Sotalol HCL 320 mg/d (85) PC (83)	Symptomatic AF, successful chemical or DCCV if persistent	Percentage recurrence AF during FU 69/85 sotalol 45/86 propafenone 73/83 PC (p<0.001)	N/A	N/A	Long-term results show superiority of propafenone (question methods of comparison)
Kuhlkamp, et al., 2000 (188) 10898425	To evaluate the efficacy of metoprolol XL to reduce AF recurrence after cardioversion	RCT, double- blind (394)	Metoprolol XL 100 mg/d (197) PC (197)	Inclusion: Persistent AF with successful cardioversion (DC or chemical) Exclusion: Concomitant Tx with any class I or class 3 AAD, beta blocker or CCB	Percentage of pts with recurrent AF during FU (up to 6 mo) 48.7% metoprolol XL 59.9% PC (p=0.005)	Mean HR was lower with recurrent AF in pts on metoprolol (107 vs. 98; p=0.015)	SAEs similar with metoprolol or PC	Metoprolol XL prevents recurrent AF after cardioversion Short duration of FU
Naccarelli GV, et al., 1996 (189) 8607392	To compare the efficacy of flecainide to quinidine for PAF	RCT, open- label (239)	Flecainide acetate 200- 300 mg/d (122) Quinidine sulfate 1000- 1500 mg/d (117)	Symptomatic PAF	Percentage of pts with reported episodes of symptomatic AF 72% flecainide 74.3% quinidine (p=0.54)	Combined endpoint efficacy and tolerability at 1 y 70% flecainide vs. 55.4% quinidine (p<0.007)	N/A	Flecainide and quinidine have similar efficacy but flecainide is better tolerated
PAFAC, Fetsch T, et al., 2004 (190) 15302102	To compare the efficacy of quinidine and sotalol to PC for maintenance of SR in pt with persistent AF	RCT, double- blind (848)	Quinidine sulfate 480 mg/d Sotalol HCL 320 mg/d	Persistent AF lasting >7 d (mean duration: 15 mo), N=848, male: 66%, age (mean, SD): 63, ±9, structural heart disease: NS, left anterior descending: 45 mm, LVEF: 60%	At 12 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A

		_	l 50	T	T	T	ī	
DALLAC	To 00000	DCT double	PC Dronedarone	Ago SEE vivith parmanent	Consissant automas	Lloopitalization	Most common AEs	Dronedarone
PALLAS, Connolly SJ, et al., 2011 (165) 22082198	To assess whether dronedarone would reduce major vascular events in high-risk permanent AF	RCT, double-blind (3236)	PC	Age >65 y with permanent AF or atrial flutter with no plan to restore SR and high risk feature: CAD, previous stroke or TIA, HF class II or III Sx, LVEF<40%, PAD or age >75 y, HTN & DM	Coprimary outcomes: Stroke, MI, SE, or CV death, 43 pts receiving dronedarone and 19 receiving PC (HR: 2.29; 95% CI: 1.34- 3.94; p=0.002 Unplanned CV hospitalization or death, 127 pts receiving dronedarone and 67 pts receiving PC (HR: 1.95; 95% CI: 1.45- 2.62; p<0.001)	Hospitalization for HF occurred in 43 pts in the dronedarone group and 24 in the PC group (HR: 1.81; 95% CI: 1.10- 2.99; p=0.02)	were diarrhea, asthenic condition, nausea and vomiting, dizziness, dyspnea, and bradycardia ALT>3x upper limit normal range occurred in 22 of 1,481 (1.5%) pts receiving dronedarone and in 7 of 1,546 (0.5%) receiving PC p=0.02	increased rates of HF, stroke, and death from CV causes in pts with permanent AF who were at risk for major vascular events.
Piccini JP, et al., 2009 (191) 19744618	To evaluate randomized trials of amiodarone and dronedarone for safety and efficacy in AF	Meta-analysis	4 trials of amiodarone vs. PC 4 trials of dronedarone vs. PC 1 comparison of amiodarone vs. dronedarone	Randomized PC-controlled trials of amiodarone and dronedarone for maintenance of SR in pts with AF	OR: 0.12 amiodarone vs. PC (95% CI: 0.08-0.19) OR: 0.79 dronedarone vs. PC (95% CI: 0.33-1.87)	N/A	Amiodarone trend towards increased mortality Amiodarone greater number AEs than dronedarone	Dronedarone is less effective than amiodarone but has fewer AEs

Plewan A, et al., 2001 (192) 11482924	N/A	RCT, open- label (128)	Sotalol 160 mg/d Bisoprolol fumarate 5 mg/d	Persistent AF (mean duration: 9 mo). N=128 Male: 62%. Age (mean, SD): 59, ±10 Structural heart disease: 72%. LAD: 48 mm. LVEF: 41%	At 8 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A
PRODIS, Crijns HJ, et al., 1996 (193) 8842506	N/A	RCT, double- blind (56)	Disopyramide phosphate 750 mg/d Propafenone HCL 900 mg/d	Persistent AF (mean duration: 5 mo). N=56 Male: 68%. Age (mean, SD): 60, ±11 Structural heart disease: 65%. LAD: 46 mm. LVEF: NS	At 6 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A
RAFT, Pritchett EL, et al., 2003 (194) 14556870	Assess the efficacy and safety of sustained-released propafenone for maintenance of SR	RCT, double- blind (523)	Propafenone hydrochloride 450-850 mg/d (397) PC (126)	Inclusion: Symptomatic AF (type not specified) SR at time of randomization Exclusion: Permanent AF, NYHA class III or IV HF, cardiac surgery <6 mo, MI<12 mo, WPW syndrome, 2nd or 3rd degree AV block, QRS>160 ms, HR<50 bpm, Hx of VF, VT or ICD	At 9 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A
Reimold SC, et al., 1993 (195) 8438741	To compare the efficacy of propafenone and sotalol for maintenance of SR	RCT, open- label (100)	Propafenone HCL 675 mg/d (50) Sotalol HCL 320 mg/d (50)	Pts with AF with previous AAD failure	Percentage with SR at 3, 6, and 12 mo 46%, 41%, 30% propafenone 49%, 46% sotalol	N/A	N/A	Propafenone and sotalol similar efficacy
Richiardi E, et al., 1992 (196) 1600529	To evaluate the efficacy and safety of oral propafenone vs. quinidine at preventing AF	RCT, open- label (200)	Propafenone 900 mg/d Quinidine 1000 mg/d	≥3 AF episodes in past 6 mo Exclusion: LA size >55 mm, hepatic or renal insufficiency, MI<30 d, pregnant, decompensated HF, thyroid dysfunction	SR at 6 mo 60% propafenone 56% quinidine SR at 1 y 48% propafenone 42% quinidine	p=NS	N/A	10% side effects propafenone 24% side-effects quinidine (p=0.02)
SAFE-T, Singh BN, et	To assess the efficacy of	RCT, double- blind	Amiodarone 300 mg/d	Inclusion: Persistent AF>72 h including at time of	Pharmacological Conversion to SR	Sustained SR improved QOL	NS difference in AEs among the 3 groups	N/A

al., 2005 (197) 15872201	amiodarone and sotalol in converting AF and maintenance of SR	(665)	Sotalol 320 mg/d PC	randomization & on oral anticoagulation Exclusion: Paroxysmal AF or atrial flutter, NYHA class III or IV HF, CrCl<60 mL/min, intolerance to beta blockers, Hx of long QT syndrome	27.1% amiodarone 24.2% sotalol 0.8% PC Median Time to Recurrence AF (intention to treat) 487 d amiodarone 74 d sotalol 6 d PC p<0.001	and exercise capacity		
SAFIRE-D, Singh S, et al., 2000 (198) 11067793	To determine the efficacy and safety of dofetilide in converting AF or atrial flutter to SR and maintaining SR for 1 y	RCT, double- blind (250)	Dofetilide 250- 1000 mcg/d PC	Inclusion: Age 18-85 y with AF or atrial flutter 2-26 wk duration Exclusion: Sinus node dysfunction, QRS>180 ms, QT interval>400 ms (QT>500 ms with BBB), sinus rate<50 bpm, Hx of renal or hepatic disease, use of verapamil, diltiazem, QT prolonging drugs	Pharmacological Conversion Rate 6.1% 125 mcg BID 9.8% 250 mcg BID 29.9% 500 mcg BID 1.2% PC p=0.015 250 mcg and p<0.001 500 mcg (vs. PC) Probability of SR at 1 y 0.40 125 mcg BID 0.37 250 mcg BID 0.58 500 mcg BID 0.25 PC	N/A	2 cases of torsade de pointes during initiation phase (0.8%) 1 sudden death (proarrhythmic) on Day 8 (0.4%)	In-hospital initiation and dosage adjustment based on QTc and CrCl to minimize proarrhythmic risk
SOPAT, Patten M, et al., 2004 (199) 15321697	To assess the effectiveness of 2 AAD on frequency of AF	RCT, double- blind (1033)	High-dose Quinidine sulfate 480 mg/d and verapamil 240 mg/d (263) Low-dose Quinidine sulfate 320 mg/d and	Age 18-80 y, symptomatic PAF Exclusion: cardiogenic shock, LA thrombus, MI or cardiac surgery <3 mo, UA, valve disease requiring surgery, ICD or pacemaker, sick sinus syndrome, 2 nd or 3 rd degree AV block, QTc>440 ms, bradycardia,	Time to 1st recurrence of symptomatic PAF or premature discontinuation 105.7 d PC 150.4 d high-dose quinidine/verapamil 148.9 d low-dose quinidine/verapamil	AF burden (% says with symptomatic AF) 6.1% PC 3.4% high dose 4.5% low dose 2.9% sotalol (p=0.026)	1 death and 1 VT event related to high-dose quinidine/verapamil 2 syncopal events related to sotalol	Quinidine/verapamil fixed combination similar efficacy to sotalol but with risk of SAEs

[©] American College of Cardiology Foundation and American Heart Association, Inc.

			verapamil 160 mg/d (255) Sotalol HCL 320 mg/d (264) PC (251)	renal or liver dysfunction, hypokalemia, bundle branch block Mean time under Tx 233 d	145.6 d sotalol (p<0.001)			
Stroobandt R, et al., 1997 (200) <u>9052343</u>	To assess the efficacy of propafenone at maintaining sinus rhythm	RCT, double- blind (102)	Propafenone HCL 150 mg TID (77) PC (25)	Age >18 y with AF, enrolled in maintenance phase after attempt at pharmacological conversion with IV propafenone (and if unsuccessful DCCV)	Proportion of pts free from recurrent symptomatic AF at 6 mo 67% propafenone 35% PC (p<0.001)	N/A	NS difference in AEs	Evidence for the efficacy of propafenone in maintaining sinus rhythm after cardioversion. Short duration of FU (6 mo)
SVA-3, Pritchett EL, et al., 2000 (201) 10987602	To assess the effectiveness of azimilide in reducing symptomatic AF or atrial flutter	RCT, double- blind (384)	Azimilide 50 mg, 100 mg, or 125 mg PC	Inclusion: Age ≥18 y, Symptomatic AF in SR at time of randomization Exclusion: Rest angina or UA, class IV CHF, Hx of torsade de pointes, QTc>440 ms, resting SR<50 bpm	Time to 1st symptomatic AF recurrence Azimilide 100 mg/125 mg QD vs. PC, HR: 1.58; p=0.005	N/A	2 sudden deaths in azimilide groups and 1 case of torsade de pointes	Initiated in outpatient setting
Villani R, et al., 1992 (202) 1559321	To compare the efficacy of amiodarone to disopyramide	RCT, open- label (76)	Amiodarone 200 mg/d (41) Disopyramide phosphate 500 mg/d (35)		Recurrence of AF at end of FU 57% disopyramide (13 mo) 32% amidarone (14 mo)	N/A	Disopyramide discontinued due to AE 14% <1 wk and another 14% by end of trial 8.5% developed hyperthyroidism	Amiodarone is more effective than disopyramide for prevention of recurrent AF

AAD indicates antiarrhythmic drug; ADONIS, American-Australian-African Trial With Dronedarone in Patients With Atrial Fibrillation or Atrial Flutter for the Maintenance of Sinus Rhythm; AE, adverse event; AF, atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; ALT, alanine aminotransferase; ANDROMEDA, European Trial of Dronedarone in Moderate to Severe Congestive Heart Failure; ASAP, ASA and Plavix; ATHENA, A Trial With Dronedarone to Prevent Hospitalization or Death in Patients With Atrial Fibrillation; AV, atrioventricular; BBB, bundle-branch block; BID, twice daily; CABG, coronary artery bypass graft; CCB, calcium channel blocker; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disorder; CrCl, creatinine clearance; CTA, Canadian Trial of Atrial Fibrillation; CV, cardiovascular; DAFNE, Dronedarone Atrial Fibrillation Study after Electrical Cardioversion; DC, direct current; DCCV, direct current cardioversion; DIAMOND, Danish Investigators of Arrhythmia and Mortality on Dofetilide; DIONYSOS, Efficacy & Safety of Dronedarone Versus Amiodarone for the Maintenance of Sinus Rhythm in Patients With Atrial Fibrillation; DM, diabetes mellitus; Dx, diagnosis; FAPIS, Flecainide and Propafenone Italian Study; FU, follow-up; GEFACA, Grupo de Estudio de Fibrilacion Auricular Con Amiodarona; GI, gastrointestinal; HCL, hydrochloride; HF, heart failure; HR, hazard ratio; HTN, hypertension; Hx, history; ICD, implantable cardioverter defibrillator; K, potassium; LA, left atrial; LAD, left atrial dimension; LV, left ventricular; LVEF, left ventricular ejection fraction; MI, myocardial infarction; MSE, main safety endpoint; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; OR, odds ratio; PAF, paroxysmal atrial fibrillation; PALLAS, Permanent Atrial Fibrillation Outcome Study Using Dronedarone on Top of Standard Therapy; PC, placebo; pts, patients; QD,

once daily; QID, four times a day; QOL, quality of life; RAFT, Rythmol Atrial Fibrillation Trial; RCT, randomized controlled trial; RR, relative risk; SAFE-T, Sotalol Amiodarone Atrial Fibrillation Efficacy Trial; SAFIRE-D, Symptomatic Atrial Fibrillation Investigative Research on Dofetilide; SD, standard deviation; SOPAT, Suppression of Paroxysmal Atrial Tachyarrhythmias; SR, sinus rhythm; SVA, Supraventricular Arrhythmia Program; TIA, transient ischemic attack; TID, three times a day; Tx, therapy; UA, unstable angina; VF, ventricular fibrillation; VT, ventricular tachycardia; and WPW, Wolff-Parkinson-White.

Data Supplement 13. Outpatient Initiation of Antiarrhythmic Drug Therapy (Section 6.2.1.2)

Study Name, Author, Year	Study Type	Intervention (n)	Rhythm at Time of	Place of Initiation	Patient Population	Adverse Events
Benditt D, et	Prospective	Sotalol 80 BID (59)	Initiation SR	50 pts -	Structural heart disease 57%	No cases of VT/VF/torsade
al., 1999 (175) 10496434	dose finding study	Sotalol 120 BID (63) Sotalol 160 BID (62) PC (69)		outpatient 134 pts - inpatient	Exclusion: Hx of torsade de pointes, CHF, QT>450 ms, hypokalemia hypomagnesemia, bradycardia	QT>520 ms in 7 pts (4 in 120 mg BID and 3 in 160 mg BID) Premature discontinuation due to AEs 25% inpatients, but
						6% of outpatients (bradycardia predominantly)
Chung MK, at al., 1998 (203) 9669266	Retrospective	Sotalol	Not documented	Inpatient	120 inpatients admitted for sotalol initiation	7 (5.8%) new or increased ventricular arrhythmias, 2 with torsades de pointes (d 6 in pt with pacemaker and hypokalemia and d 4 in pts with ICD)
					Structural heart disease (80%)	20 (16.7%) with significant bradycardia
						8 (6.7%) excessive QT prolongation
SAFE-T, Singh BN, et al., 2005 (197)	Prospective RCT	Total 665 Amiodarone 267 Sotalol 261	AF	Outpatient	Initiated sotalol or amiodarone in the outpatient setting during AF	1 case torsade in sotalol group (nonfatal, time of occurrence not specified)
15872201		Placebo 137			Excluded CHF class III or IV, Hx of long QT, CrCl<60	13 deaths/267 (6 sudden) amiodarone group 15 deaths/261 (8 sudden) sotalol group 3 deaths/137 (2 sudden) PC group (no significant difference)
Zimetbaum PJ, et al.,	Prospective	172 Amiodarone 66	SR	Outpatient	Pts with AF in sinus at time of initiation started on oral	6 symptomatic AEs (none before d 4)
1999 (204)		(38%)			antiarrhythmic medication	Class Ic
<u>10072241</u>		Flecainide 45 (26%)			Descrived 4 or 2 description	3 atrial flutter with 1:1 d 6 or 7
		Sotalol 20 (12%) Disopyramide 16			Received 1 or 2 doses of AAD in hospital or clinic and monitored for	1 symptomatic brady d 4
		(9%)			≤8 h and then 10 d continuous loop	Sotalol
		Propafenone 11 (6%)			event recorder	1 symptomatic bradycardia d 7
		Quinidine 8 (5%)			Eviluaioni OTo>FFO ma NIVLIA alasa	1 QT prolongation 370-520 ms d 4
		Procainamide 6 (4%)			Exlusion: QTc>550 ms, NYHA class III or IV CHF, or pacemaker	

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Hauser TH, et al., 2003 (205) 12804730	Prospective	409 Amiodarone 212 (51.8%) Class Ic 127 (31.1%) Propafenone 64 (15.6%) Flecainide 63 (15.4%) Sotalol 37 (9.0%) Class IA 33 (8.1%) Quinidine 8 (2%) Disopyramide 16 (3.9%) Procainamide 9 (2.2%)	SR	Outpatient	Pts with AF in sinus at time of initiation started on oral AAD with daily 30 s recording or with Sx	Amiodarone 2 Death (sudden) d 7 and d 9 3 Bradycardia requiring pacemaker d 6, 7, and 8 9 Bradycardia requiring dose reduction Class Ic Bradycardia d 7 and d 9 dose reduction Sotalol – none Quinidine Death (sudden) d 3
CTAF, Roy D, et al., 2000 (179) 10738049	Prospective open-label RCT	403 Amiodarone 201 Sotalol 101 Propafenone 101	Sinus≈60%	Outpatient	Exclusion: QTc>480, bradycardia <50 bpm	Arrhythmic deaths – 3 amiodarone group (2 had been off the drug >1 y) and 1 in sotalol/propafenone group Cardiac arrest due to torsade – propafenone Serious bradyarrhythmias – 6 amiodarone 7 in sotalol/propafenone group Time to event after initiation not specified All events occurred beyond 2 d of drug initiation mostly bradyarrhythmias
Kochiadakis GE, et al., 2004 (187) <u>15589019</u>	N/A	254 Sotalol 85 Propafenone 86 PC 83	Sinus	Inpatient	N/A	No torsades noted Sotalol - 3 bradycardia during loading phase Propafenone – 1 bradycardia, 1 QRS widening

AAD indicates antiarrhythmic drug; AE, adverse event; AF, atrial fibrillation; BID, twice daily; CHF, congestive heart failure; CrCl, creatinine clearance; CTAF, Canadian Trial of Atrial Fibrillation; Hx, history; ICD, implantable cardioverter-defibrillator; IV, intravenous; NYHA, New York Heart Association; pts, patients; RCT, randomized controlled trial; RR, relative risk; SAFE-T, Sotalol Amiodarone Atrial Fibrillation Efficacy Trial; SR, sinus rhythm; Sx, symptom; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Data Supplement 14. Upsteam Therapy (Section 6.2.2)

Data Gappionio	it i ii opotouiii iiii	oralpy (Goodien (<u> </u>				
Study Name,	Study Aim	Study Type/	Intervention vs.	Patient Population	End	points	Comments
Author, Year		Size (N)	Comparator (n)				
					Primary Endpoint & Results	Secondary Endpoint & Results	

ANTIPAF, Goette A, et al., 2012 (206) 22157519	Effect of olmesartan on AF burden in pts with paroxysmal AF and no structural heart disease	Prospective, PC-controlled RCT	Olmesartan 40 mg QD (214) PC (211)	Pts with PAF and no other indication for ACE inhibitor or ARB Tx	No difference in the 1° endpoint of AF burden (p=0.770)	No difference in QOL, time to 1st AF recurrence, time to persistent AF and hospitalizations	In pts with AF (2° prevention) but without structural disease, 1 y of ARB does not appear to decrease AF burden
GISSI-AF, 2009 (207) 20435196	N/A	Prospective, PC-controlled, RCT	Valsartan (722) PC (720)	AF and underlying CV disease, diabetes, or left atrial enlargement	Co-primary endpoints: Time to first recurrence of AF, 295 d valsartan, 271 d PC Proportion of pts who had >1 recurrence of AF>12 mo, 26.9% valsartan, 27.9% PC OR: 0.95; p=0.66	N/A	Tx with valsartan not associated with reduced AF
Healey JS, et al., 2005 (208) 15936615	Systematic review of all RCT evaluating the benefit of trials of ACE inhibitor and ARBs in prevention of AF	Meta-analysis	N/A	11 studies included with 56,308 pts	ACE inhibitor and ARB reduced incidence of AF (RR: 0.28; p=0.0002) Reduction in AF greatest in pts with HF (RR: 0.44; p=0.007) No significant reduction in pts with HTN (RR: 0.12; p=0.4) although 1 study 29% reduction in pts with LVH (RR: 0.29)	N/A	ACE inhibitor and ARBs appear to be effective in prevention of AF probably limited to pts with systolic LV dysfunction or HTN LVH
J-RHYTHM II, Yamashita T, et al., 2011 (208, 209) 21148662	N/A	Open label, RCT	Candesartan Amlodipine	Pts with PAF (2° prevention) and HTN	N/A	N/A	Tx of HTN by candesartan was not superior to amlodipine for reduction in AF frequency
Schneider MP, et al., 2010 (210) 20488299	N/A	Meta-analysis	N/A	23 studies included with 87,048 pts	N/A	N/A	N/A

^{1°} indicates primary; 2°, secondary; ACE, angiotensin-converting enzyme; AF, atrial fibrillation; ANTIPAF, Angiotensin II-Antagonist in Paroxysmal Atrial Fibrillation; ARB, angiotensin-receptor blockers; CV, cardiovascular; GISSI-AF, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation; HF, heart failure; HTN, hypertension; J-RHYTHM, Japanese Rhythm Management Trial for Atrial Fibrillation; LV, left ventricular; LVH, left ventricular hypertrophy; N/A, not applicable; OR, odds ratio; PAF, paroxysmal atrial fibrillation; PC, placebo; pts, patients; QD, once daily; QOL, quality of life; RCT, randomized controlled trial; RR, relative risk; and Tx, therapy.

Data Supplement 15. AF Catheter Ablation to Maintain Sinus Rhythm (Section 6.3)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Type of AF	Ablation Technique	Endpoints		AF Free at 1 y		Crossover Rate to RFA	Adverse Events	Study Limitations
						Primary Endpoint & Results	Ablation	AAD	P value			
Krittayaphong R, et al., 2003 (211) <u>12866763</u>	To compare the efficacy of amiodarone to RFA for maintenanc e of SR	RCT (30)	RFA Amiodarone	Paroxysmal and persistent	Circumferen tial PVI with anatomic isolation	Freedom from AF at 12 mo	79%	40%	0.018	Not stated	1 stroke in RFA arm 46.7% AE in amiodarone arm	Small sample size, single center
RAAFT, Wazni OM, et al., 2005 (212) 15928285	To determine whether PVI is feasible as 1st line Tx for symptomatic AF	RCT (70)	RFA (33) AAD (37)	Paroxysmal	Segmental PVI with electrical isolation	Freedom from AF at 12 mo (Any recurrence of symptomatic AF or asymptomatic AF>15 s) 87% RFA 37% AAD	87%	37%	p<0.001	49%	Pulmonary vein stenosis 2 (6%) in RFA group	N/A
CACAF, Stabile G, et al., 2005 (213) 16214831	Compare RFA to AAD for prevention of AF in pts who failed AAD	RCT (137)	RFA (68) AAD – primarily amiodarone (69)	Paroxysmal and persistent	Circumferen tial PVI with anatomic isolation	Freedom from AF at 12 mo 55.9% RFA 8.7% AAD p<0.001	56%	9%	p<0.001	57%	4.4% major complications RFA	N/A

Oral H, et al., 2006 (214) 16908760	Persistent AF Compare RFA to AAD for prevention of AF	RCT (146)	RFA (77) Cardioversio n with short-term amiodarone (69)	Persistent	Circumferen tial PVI with anatomic isolation	Monthly freedom from AF off AAD 74% RFA 58% control (intention to treat) p=0.05 70% RFA 4% control (on-Tx analysis) p<0.001	70% 74%	4% (on-Tx analysis) 58% (intention to treat analysis)	p<0.001 p=0.05	77%	N/A	77% AAD crossed over to RFA
APAF Pappone C, et al., 2006 (128) 14707026	Paroxysmal AF	RCT (198)	RFA (99) AAD (99)	Paroxysmal	Circumferen tial PVI with anatomic isolation	Freedom from AF at: 12 mo 86% RFA 22% AAD	86%	22%	p<0.001	42%	RFA: 1 TIA, 1 pericardial effusion not requiring drainage AAD: 3 proarrhythmia flecainide, 7 thyroid disfunction amiodarone, 11 sexual dysfunction sotalol	Single center, high crossover rate (42 of 99, 42%)
A4 Jais P, et al., 2008 (215) 19029470	Compare RFA to AAD in paroxysmal AF	RCT (112)	RFA (53) AAD (59)	Paroxysmal	Circumferen tial PVI with electrical isolation	Freedom from AF at 12 mo	89%	23%	p<0.001	63%	RFA: (155 ablation procedures, 2 tamponade, 2 groin, hematoma) AAD: 1 hyperthyroidism	N/A
Forleo GB, et al., 2009 (216) 19443515	Compare RFA to AAD in pts with	RCT (70)	RFA (35) AAD (35)	Paroxysmal and persistent	Circumferen tial PVI with electrical	N/A	80%	43%	p=0.001	Not stated	N/A	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

	diabetes	I		ı	isolation	T		<u> </u>	1			1
Thermocool Wilber DJ, et al., 2010 (217) 20103757	Compare RFA to AAD in paroxysmal AF	RCT (167)	RFA (106) AAD (61)	Paroxysmal	Circumferen tial PVI with electrical isolation	Freedom from protocol-defined Tx failure (documented symptomatic AF, repeat ablation >80 d after initial, changes in drug regimen post blanking, absence of entrance block)	66%	16%	p<0.001	59%	4.9% RFA 8.8% AAD	Catheter ablation is more effective than medical Tx alone in preventing recurrent Sx of paroxysmal AF in pts who have already failed Tx with 1 AAD
STOP-AF Packer DL, et al., 2013 (218) 23500312	Assess efficacy of cryoballoon catheter ablation to AAD Tx in PAF	RCT (245)	Cryoballoon ablation (163) AAD (flecainide, propafenone , sotalol) (82)	Paroxysmal	Circumferen tial PVI with electrical isolation	Freedom from CTF (no detected AF, no AF interventions, no use of non-study drugs) 3-mo blanking period 69.9% cryoballoon (57.7% off drug) vs. 7.3% AAD (intention to treat) 60.1% single ablation (n=98)	70%	7.3%	p<0.001	79%	All events: cryoablation 12.3%, AAD 14.6% Procedure event rate 6.3% Phrenic nerve paralysis 11.2% (29) with 86.2% (25) resolved at 12 mo	N/A
RAAFT2 Morillo C, et al., 2014 (219)	Compare RFA to AAD as first-line therapy for pts with AF	RCT (127)	RFA (66) AAD (61)	Paroxysmal (98%%) and Persistent	Circumferen tial PVI with electrical isolation	AF, atrial flutter, or atrial tachycardia >30 s at 24 months	45%	28%	p=0.02	47%	9% RFA 5% AAD	>20% additional ablation
MANTRA-PAF	Compare	RCT (294)	RFA (146)	Symptomati	Circumferen	Cumulative	13%	19%	p=0.10	36%	RFA group – 1	No difference

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Cosedis	RFA to AAD		С	tial PVI with	burden of AF				death due to	in cumulative
Nielsen J, et	as 1 st -line Tx	AAD (class	Paroxysmal	voltage					procedural	burden of AF
al., 2012 (220)	for pts with	Ic or class	AF prior to	abatement	Per visit burden	9% AF	18% AF	p=0.007	stroke and 3	endpoint and
23094720	AF	III) (148)	AAD Tx		at 24 mo	burden	burden		tamponade	no difference
						at 24 mo	at 24	p=0.01		in burden at
					Freedom from		mo71%			3, 6, 12 or 18
					AF at 24 mo	85%				mo

A4 indicates Catheter Ablation Versus Antiarrhythmic Drugs for Atrial Fibrillation; AAD, antiarrhythmic drug; AE, adverse event; AF, atrial fibrillation; APAF, Ablate and Pace in Atrial Fibrillation; CACAF, Catheter Ablation for the Cure of Atrial Fibrillation; CTF, chronic treatment failure; N/A, not applicable; PAF, paroxysmal atrial fibrillation; PVI, pulmonary vein isolation; RAAFT, Radiofrequency Ablation for Atrial Fibrillation Trial; RCT, randomized controlled trial; RFA, radiofrequency ablation; RR, relative risk; SR, sinus rhythm; STOP-AF, Sustained Treatment of Paroxysmal Atrial Fibrillation; Sx, symptom; TIA, transient ischemic attack; and Tx, therapy.

Data Supplement 16. Meta-Analyses and Surveys of AF Catheter Ablation (Section 6.3)

Study Name, Author, Year	Study Aim	Study Size (N)	Patient Population	Study Intervention	Endpoints	Follow-Up	Adverse Events
Bonnano C, et al., 2010 (221) 19834326	Systematic review of RCT of RFA vs. AAD	8 studies (844 pts)	N/A	N/A	98 (23.2%) of 421 pts in the Tx group and 324 (76.6%) of 423 pts in the control group had atrial tachyarrhythmia recurrence	N/A	N/A
Calkins H, et al., 2009 (222) 19808490	Systematic review of radiofrequency ablation for AF	63 studies included (8789 pts)	Mean age 55.5 y	N/A	Single-procedure success rate of ablation off AAD Tx was 57% (95% CI: 50% to 64%) Multiple procedure success rate of AAD was 71% (95% CI: 65% to 77%) Multiple procedure success rate on AAD or with unknown AAD usage was 77% (95% CI: 73% to 81%)	Major complication rate 4.9% Stroke/TIA 0.5% Mortality 0.7% Cardiac tamponade 0.8% PV stenosis 1.6% LA/esophageal fistula 0.0%	N/A
Parkash R, et al., 2011 (223) 21332861	Systematic review of RCT to assess optimal technique for RFA of AF	N/A	N/A	N/A	Freedom from AF after a single procedure RFA was found to be favorable in prevention of AF over AADs in either paroxysmal (5 studies, RR: 2.26; 95% CI: 1.74-2.94) or persistent AF (5 studies, RR: 3.20; 95% CI: 1.29-8.41)	Wide-area PVI appeared to offer the most benefit for both paroxysmal (6 studies, RR: 0.78; 95% CI: 0.63-0.97) and persistent AF (3 studies, RR: 0.64; 95% CI: 0.43-0.94)	N/A
Piccini JP, et al., 2009 (224) 20009077	Meta-analysis of all RCTs comparing PVI and medical Tx for the	N/A	N/A	N/A	PVI was associated with markedly increased odds of freedom	N/A	Among those randomly assigned to PVI, 17% required a repeat PVI ablation before 12 mo. The

[©] American College of Cardiology Foundation and American Heart Association, Inc.

maintenance of	from AF at 12 mo of FU (n=266/344	rate of major complications
sinus rhythm	[77%] vs. n=102/346 [29%];	was 2.6% (n=9/344) in the
-	OR: 9.74; 95% CI: 3.98-23.87)	catheter ablation group

AAD indicates antiarrhythmic drug; AF, atrial fibrillation; ; FU, follow-up; LA, left atrial; N/A, not applicable; OR, odds ratio; pts, patients; PV, pulmonary vein; PVI, pulmonary vein isolation; RCT, randomized controlled trial; RFA, radiofrequency ablation; RR, relative risk; TIA, transient ischemic attack; and Tx, therapy.

Data Supplement 17. Specific Patient Groups (Section 7)

Study	Aim of study	Study Size	Patient Population / Inclusion & Exclusion Criteria	Endpoint(s)	Statistical Analysis Reported	CI and/or P values	OR/HR/RR/ Other	Study Conclusion
Roy	To investigate	1,376 (682	Inclusion criteria: LVEF≤35% (measured by	1° outcome	The 1° outcome, death from	None of the		The routine strategy of
	maintenance of	in rhythm-	nuclear imaging, echocardiography, or cardiac	was time to	CV causes, occurred in 182 pts	2° outcomes		rhythm control does
	SR (rhythm	control	angiography, with testing performed ≤6 mo	death from	(27%) in the rhythm-control	differed		not reduce the rate of
D, et al.,	control) with	group and	before enrollment); Hx of CHF (defined as	CV causes	group and 175 pts (25%) in the	significantly		death from CV
2008 (225)	ventricular rate	694 in rate-	symptomatic NYHA class II or IV within the		rate-control group	between the		causes, as compared
<u>18565859</u>	control in pts	control	previous 6 mo, asymptomatic condition that pt			Tx groups		with a rate-control
	with LVEF≤35%	group)	had been hospitalized for HF during the previous		Death from any cause (32% in			strategy in pts with AF
	and Sx of CHF,		6 mo, or LVEF≤25%; Hx of AF (with EKG		the rhythm-control group and	95% CI:		and CHF
	and a Hx of AF		documentation), defined as 1 episode lasting for		33% in the rate-control group)	0.86-1.30;	HR: 1.06	
			≥6 h or requiring cardioversion within the			p=0.53		
			previous 6 mo or an episode lasting for ≥10 min		Ischemic or hemorrhagic			
			within the previous 6 mo and previous electrical		stroke 3% and 4%,	95% CI:		
			cardioversion for AF; and eligibility for long-term		respectively	0.80-1.17;	HR: 0.97	
			Tx in either of the 2 study groups			p=0.73		
					Worsening HF (defined as HF			
			Exclusion criteria: Persistent AF for ≥12 mo, a		requiring hospitalization,	95% CI:		
			reversible cause of AF or HF, decompensated		administration of an IV diuretic,	0.40-1.35;	HR: 0.74	
			HF within 48 h prior to intended randomization,		or change in Tx strategy)	p=0.32		
			use of AADs for other arrhythmias, 2 nd degree or					
			3 rd degree AVB (bradycardia of <50 bpm), Hx of		Composite outcome of death	95% CI:		
			the long-QT syndrome, previous ablation of an		from CV causes, stroke, or	0.72-1.06;	HR: 0.87	
			AV node, anticipated cardiac transplantation		worsening HF	p=0.17		
			within 6 mo, renal failure requiring dialysis, lack					
			of birth control in women of child-bearing			95% CI:		
			potential, estimated life expectancy of <1 y, and			0.77-1.06;	HR: 0.90	
			an age <18 y			p=0.20		

AFFIRM, Olshansky B, et al., (163) 15063430	To evaluate and compare several drug classes for long-term ventricular rate control	2027	Inclusion criteria: (All criteria must have been met). Episode of AF documented on EKG or rhythm strip within last 6 wk, ≥65 y or <65 y + ≥1 clinical risk factor for stroke (systemic HTN, DM, CHF, TIA, prior cerebral vascular accident, left atrium ≥50 mm by echocardiogram, fractional shortening <25% by echocardiogram (unless paced or LBBB present), or LVEF<0.40 by radionuclide ventriculogram, contrast angiography, or quantitative echocardiography), duration of AF episodes in last 6 mo must total ≥6 h, unless electrical and/or pharmacologic cardioversion was performed prior to 6 h, duration of continuous AF must be <6 mo, unless normal SR can be restored and maintained ≥24 h, in opinion of clinical investigator, pt (based on clinical and laboratory evaluation before randomization) must be eligible for both Tx groups, based on pt Hx, pt must be eligible for ≥2 AADs (or 2 dose levels of amiodarone) and ≥2 rate-controlling drugs Exclusion criteria: Not presented. Based on the judgment that certain therapies are contraindicated or inclusion would confound the result. Criteria included cardiac, other medical, and nonmedical	Overall rate control with various drugs (average FU 3.5±1.3 y)	Overall rate control was met in 70% of pts given beta blockers as the 1st drug (with or without digoxin), vs. 54% with CCBs (with or without digoxin), and 58% with digoxin alone Multivariate analysis revealed a significant association between 1st drug class and several clinical variables, including gender, Hx of CAD, pulmonary disease, CHF, HTN, qualifying episode being the 1st episode of AF, and baseline heart rate	N/A	N/A	In pts with AF, rate control is possible in the majority of pts. In the AFFIRM FU study, beta blockers were most effective. The authors noted frequent medication changes and drug combinations were needed
---	---	------	--	--	--	-----	-----	---

ANDROME DA, Kober L, et al., 2008 (171) 18565860	To evaluate the efficacy of dronedarone in reducing hospitalization due to CHF in pts with symptomatic HF	627	Inclusion criteria: Pts ≥18 y hospitalized with new or worsening HF and who had ≥1 episode of SOB on minimal exertion or at rest (NYHA III or IV) or paroxysmal nocturnal dyspnea within the month before admission Exclusion criteria: LV wall motion index of >1.2 (approximating an EF of >35%), acute MI within 7 d prior to screening, a heart rate <50 bpm, PR interval >0.28 s, sinoatrial block or 2nd or 3rd degree AV block not treated with a pacemaker, Hx of Torsades de pointes, corrected QT interval >500 ms, a serum potassium level <3.5 mmol/L, use of class I or III AADs, drugs known to cause Torsades de pointes, or potent inhibitors of the P450 CYP3A4 cytochrome system, other serious disease, acute myocarditis, constrictive pericarditis, planned or recent (within the preceding mo) cardiac surgery or angioplasty, clinically significant obstructive heart disease, acute pulmonary edema within 12 h before randomization, pregnancy or lactation, expected poor compliance, or participation in another clinical trial	The 1° endpoint was the composite of death from any cause or hospitalizati on for HF	After inclusion of 627 pts, the trial was prematurely terminated for safety reasons. A median FU of 2-mo death occurred in 8.1% of dronedarone group and 3.8% of PC group After additional 6 mo, 42 pts in dronedarone group (13.5%) and 39 pts in PC group (12.3%) died The 1° endpoint did not differ significantly between the 2 groups; there were 53 events in the dronedarone group (17.1%) and 40 events in the PC group (12.6%)	p=0.03; 95% CI: 1.07- 4.25 p=0.60; 95% CI: 0.73- 1.74 p=0.12; 95% CI: 0.92- 2.09	HR: 2.13	Dronedarone increased early mortality in pts recently hospitalized with symptomatic HF and depressed LV function. 96% of deaths were attributed to CV causes, predominantly progressive HF and arrhythmias
--	---	-----	--	--	---	--	----------	--

RACE II Van Gelder IC, et al., 2010 (167) 20231232	To investigate if lenient rate control is not inferior to strict control for preventing CV morbidity and mortality in pts with permanent AF	614	Inclusion criteria: Permanent AF up to 12 mo, age ≤80 y, mean resting heart rate >80 bpm, and current use of oral anticoagulation Tx (or ASA, if no risk factors for thromboembolic complications present) Exclusion Criteria: Paroxysmal AF; contraindications for either strict or lenient rate control (e.g., previous adverse effects on negative chronotrophic drugs); unstable HF defined as NYHA IV HF or HF necessitating hospital admission <3 mo before inclusion; cardiac surgery <3 mo; any stroke; current or foreseen pacemaker, ICD, and/or cardiac resynchronization Tx; signs of sick sinus syndrome or AV conduction disturbances (i.e., symptomatic bradycardia or asystole >3 s or escape rate <40 bpm in awake Sx-free pts; untreated hyperthyroidism or <3 mo euthyroidism; inability to walk or bike	Composite of death from CV causes, hospitalizati on for HF, and stroke, SE, bleeding and life-threatening arrhythmic events. FU duration 2 y, with a maximum of 3 y	1° outcome incidence at 3 y was 12.9% in the lenient-control group and 14.9% in the strict-control group. Absolute difference with respect to the lenient-control group of -2.0 percentage points More pts in the lenient-control group met the heart rate target or targets (304 [97.7%] vs. 203 [67.0%] in the strict-control group) Frequencies of Sx and AEs were similar in the 2 groups	Absolute risk difference, -2.0% Absolute risk difference, CI: -7.6-3.5; p<0.001 90% CI: 0.58-1.21; p=0.001 p<0.001	HR: 0.84	Lenient rate control is as effective as strict rate control and easier to achieve in pts with permanent AF
Gaita F, et al., 2007 (226) 17531584	Assess usefulness and safety of transcatheter ablation of AF in pts with HCM	26	Pts with HCM with paroxysmal (n=13) or permanent (n=13) AF refractory to antiarrhythmic Tx Characteristics: age 58±11 y, time from AF onset 7.3±6.2 y, left atrial volume 170±48 mL, 19±10 mo clinical FU	Pulmonary vein isolation at RFCA plus linear lesions	64% overall success rate 10 of these 16 success pts were off AAD Tx at final evaluation 77% success rate in PAF compared with 50% in the subgroup with permanent AF	NYHA FC in those achieving NSR 1.2±0.5 vs. 1.7±0.7 before the procedure, p=0.003	N/A	RFCA proved a safe and effective therapeutic option for AF, improved functional status, and was able to reduce or postpone the need for long-term pharmacologic Tx

Kilicaslan F, et al., 2006 (227) <u>16500298</u>	The purpose of this study was to report the results and outcome of PV antrum isolation in pts with AF and HOCM	27	27 pts with AF and HOCM who underwent PV antrum isolation between February 2002 and May 2004 Mean age 55±10 y Mean AF duration was 5.4±3.6 y AF was paroxysmal in 14 (52%), persistent in 9 (33%), and permanent in 4 (15%) Mean FU of 341±237 d	Maintenance of sinus rhythm after PV antrum isolation	13 pts (48%) had AF recurrence 5 of the 13 with recurrence maintained sinus rhythm with AADs, 1 of 13 remained in persistent AF, 7 of 13 underwent a second PV antrum isolation. After 2 nd ablation: 5 pts remained in SR Final success rate=70% (19/27) 2 pts had recurrence after 2 nd ablation; 1 maintained SR with AADs and 1 remained in persistent AF	N/A	N/A	AF recurrence after the 1st PV antrum isolation is higher in pts with HOCM. However, after repeated ablation procedures, long-term cure can be achieved in a sizable number of pts. PV antrum isolation is a feasible therapeutic option in pts with AF and HOCM
Bunch TJ, et al., 2008 (228) 18479329	Assess efficacy of RFCA for drug-refractory AF in HCM	32	Consecutive pts (25 male, age 51±11 y) with HCM underwent PV isolation (n=8) or wide area circumferential ablation with additional linear ablation (=25) for drug-refractory AF Paroxysmal AF=21 (64%) pts had paroxysmal AF Persistent/permanent AF=12 (36%) had persistent/permanent AF Duration AF=6.2±5.2 y Average EF=0.63±0.12 Average left atrial volume index was 70±24 mL/m² FU of 1.5±1.2 y	Survival with AF elimination and AF control	N/A	1-y survival with AF elimination was 62% (95% CI: 0.66-0.84) and with AF control was 75% (95% CI: 0.66-0.84)	N/A	AF control was less likely in pts with a persistent/chronic AF, larger left atrial volumes, and more advanced diastolic disease. Additional linear ablation may improve outcomes in pts with severe left atrial enlargement and more advanced diastolic dysfunction. 2 pts had a periprocedureal TIA, 1 PV stenosis, and 1 died after mitral valve replacement from prosthetic valve thrombosis. QOL scores improved from baseline at 3 and 12 mo

Di Donna P, et al., 2010 (229) 20173211	Assess the outcome of a multicentre HCM cohort following RFCA for symptomatic AF refractory to medical Tx	61	Age 54±13 y; Time from AF onset 5.7±5.5 y Paroxysmal AF=35; (57%) Recent persistent AF=15; (25%) Long-standing persistent AF=11; (18%) Ablation scheme: pulmonary vein isolation plus linear lesions 32 of 61 pts, 32 (52%) required redo procedures. Antiarrhythmic Tx was maintained in 22 (54%) FU: 29±16 mo 41 (67%) NSR at FU	N/A	In pts in NSR there was marked improvement in NYHA class (1.2±0.5 vs. 1.9±0.7 at baseline; p<0.001). In pts (33%), with AF recurrence, there was less marked, but still significant, improvement following RFCA (NYHA class 1.8±0.7 vs. 2.3±0.7 at baseline; p=0.002)	Independent predictors of AF recurrence: increased left atrium volume HR per unit increase 1.009, 95% CI: 1.001-1.018; p=0.037, and NYHA class (HR: 2.24; 95% CI: 1.16 to 4.35; p=0.016)	N/A	RFCA was successful in restoring long-term sinus rhythm and improving symptomatic status in most HCM pts with refractory AF, including the subset with proven sarcomere gene mutations, although redo procedures were often necessary. Younger HCM pts with small atrial size and mild Sx proved to be the best RFCA candidates, likely due to lesser degrees of atrial remodelling
---	---	----	--	-----	---	--	-----	---

1° indicates primary; 2, secondary; AAD, antiarrhythmic drug; AE, adverse event; AF, atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; ANDROMEDA, European Trial of Dronedarone in Moderate to Severe Congestive Heart Failure; ASA, aspirin; AV, atrioventricular; AVB, atrioventricular block; CAD, coronary artery disease; CCB, calcium channel blocker; CHF, congestive heart failure; CV, cardiovascular; DM, diabetes mellitus; EF, ejection fraction; EKG, electrocardiogram; FU, follow up; HCM, hypertrophic cardiomyopathy; HF, heart failure; HOCM, hypertrophic obstructive cardiomyopathy; HR, hazard ratio; HTN, hypertension; Hx, history; ICD, implantable cardioverter defibrillator; IV, intravenous; LBBB, left bundle branch block; LV, left ventricular; LVEF, left ventricular ejection fraction; N/A, not applicable; NSR, normal sinus rhythm; NYHA, New York Heart Association; pts, patients; PV, pulmonary vein; QOL, quality of life; RACE, Rate Control Efficacy in Permanent Atrial Fibrillation; RFCA, radio frequency catheter ablation; RR, relative risk; SOB, shortness of breath; SR, sinus rhythm; Sx, symptom; TIA, transient ischemic attack; and Tx, therapy.

References

- 1. MOE GK, RHEINBOLDT WC, ABILDSKOV JA. A COMPUTER MODEL OF ATRIAL FIBRILLATION. Am Heart J. 1964:67:200-20.
- Alessie M, Lammers W, Bonke F, et al. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. J Cardiac Electrophysiology and Arrhythmias. 1985;265-76.
- 3. MOE GK, ABILDSKOV JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J. 1959;58:59-70.
- 4. Cox JL, Boineau JP, Schuessler RB, et al. Successful surgical treatment of atrial fibrillation. Review and clinical update. JAMA. 1991;266:1976-80.
- 5. Cox JL, Canavan TE, Schuessler RB, et al. The surgical treatment of atrial fibrillation. II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation. J Thorac Cardiovasc Surg. 1991;101:406-26.
- 6. Cox JL, Schuessler RB, D'Agostino HJ, Jr., et al. The surgical treatment of atrial fibrillation. III. Development of a definitive surgical procedure. J Thorac Cardiovasc Surg. 1991;101:569-83.
- 7. Konings KT, Kirchhof CJ, Smeets JR, et al. High-density mapping of electrically induced atrial fibrillation in humans. Circulation. 1994;89:1665-80.
- 8. Konings KT, Smeets JL, Penn OC, et al. Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation. 1997;95:1231-41.
- 9. Morillo CA, Klein GJ, Jones DL, et al. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation. 1995;91:1588-95.
- 10. Nakao K, Seto S, Ueyama C, et al. Extended distribution of prolonged and fractionated right atrial electrograms predicts development of chronic atrial fibrillation in patients with idiopathic paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2002;13:996-1002.
- 11. Ramanna H, Hauer RN, Wittkampf FH, et al. Identification of the substrate of atrial vulnerability in patients with idiopathic atrial fibrillation. Circulation. 2000;101:995-1001.
- 12. Caballero R, de la Fuente MG, Gomez R, et al. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol. 2010;55:2346-54.
- 13. Li Z, Hertervig E, Yuan S, et al. Dispersion of atrial repolarization in patients with paroxysmal atrial fibrillation. Europace. 2001;3:285-91.
- 14. Scherlag BJ, Hou YL, Lin J, et al. An acute model for atrial fibrillation arising from a peripheral atrial site: evidence for primary and secondary triggers. J Cardiovasc Electrophysiol. 2008;19:519-27.
- 15. SCHERF D, SCHAFFER AI, BLUMENFELD S. Mechanism of flutter and fibrillation. AMA Arch Intern Med. 1953;91:333-52.
- 16. Patterson E, Po SS, Scherlag BJ, et al. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624-31.
- 17. SCHERF D, ROMANO FJ, TERRANOVA R. Experimental studies on auricular flutter and auricular fibrillation. Am Heart J. 1948;36:241-51.
- 18. Haissaguerre M, Marcus FI, Fischer B, et al. Radiofrequency catheter ablation in unusual mechanisms of atrial fibrillation: report of three cases. J Cardiovasc Electrophysiol. 1994;5:743-51.
- 19. Haissaguerre M, Jais P, Shah DC, et al. Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 1996;7:1132-44.
- 20. Jais P, Haissaguerre M, Shah DC, et al. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation. 1997;95:572-6.
- 21. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659-66.
- 22. Chen YC, Pan NH, Cheng CC, et al. Heterogeneous expression of potassium currents and pacemaker currents potentially regulates arrhythmogenesis of pulmonary vein cardiomyocytes. J Cardiovasc Electrophysiol. 2009;20:1039-45.
- 23. Ehrlich JR, Cha TJ, Zhang L, et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol. 2003;551:801-13.
- 24. Hocini M, Ho SY, Kawara T, et al. Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation. 2002;105:2442-8.
- 25. Honjo H, Boyett MR, Niwa R, et al. Pacing-induced spontaneous activity in myocardial sleeves of pulmonary veins after treatment with ryanodine. Circulation. 2003;107:1937-43.
- 26. Levin MD, Lu MM, Petrenko NB, et al. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. J Clin Invest. 2009;119:3420-36.

- 27. Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol. 2006;47:1196-206.
- 28. Wongcharoen W, Chen YC, Chen YJ, et al. Effects of a Na+/Ca2+ exchanger inhibitor on pulmonary vein electrical activity and ouabain-induced arrhythmogenicity. Cardiovasc Res. 2006;70:497-508.
- 29. Jais P, Hocini M, Macle L, et al. Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation. Circulation. 2002;106:2479-85.
- 30. Takahashi Y, Iesaka Y, Takahashi A, et al. Reentrant tachycardia in pulmonary veins of patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14:927-32.
- 31. Mandapati R, Skanes A, Chen J, et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation. 2000;101:194-9.
- 32. Ryu K, Shroff SC, Sahadevan J, et al. Mapping of atrial activation during sustained atrial fibrillation in dogs with rapid ventricular pacing induced heart failure: evidence for a role of driver regions. J Cardiovasc Electrophysiol. 2005;16:1348-58.
- 33. Skanes AC, Mandapati R, Berenfeld O, et al. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation. 1998;98:1236-48.
- 34. Atienza F, Almendral J, Moreno J, et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation. 2006;114:2434-42.
- 35. Narayan SM, Krummen DE, Rappel WJ. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23:447-54.
- 36. Narayan SM, Patel J, Mulpuru S, et al. Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study. Heart Rhythm. 2012;9:1436-9.
- 37. Chen SA, Tai CT, Yu WC, et al. Right atrial focal atrial fibrillation: electrophysiologic characteristics and radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 1999;10:328-35.
- 38. Hsu LF, Jais P, Keane D, et al. Atrial fibrillation originating from persistent left superior vena cava. Circulation. 2004;109:828-32.
- 39. Lin WS, Tai CT, Hsieh MH, et al. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. Circulation. 2003;107:3176-83.
- 40. Schmitt C, Ndrepepa G, Weber S, et al. Biatrial multisite mapping of atrial premature complexes triggering onset of atrial fibrillation. Am J Cardiol. 2002;89:1381-7.
- 41. Schwartzman D, Bazaz R, Nosbisch J. Common left pulmonary vein: a consistent source of arrhythmogenic atrial ectopy. J Cardiovasc Electrophysiol. 2004;15:560-6.
- 42. Tsai CF, Tai CT, Hsieh MH, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation. 2000;102:67-74.
- 43. Berenfeld O, Mandapati R, Dixit S, et al. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorff-perfused sheep heart. J Cardiovasc Electrophysiol. 2000;11:869-79.
- 44. Chen J, Mandapati R, Berenfeld O, et al. Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc Res. 2000;48:220-32.
- 45. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature. 1998;392:75-8.
- 46. Kalifa J, Jalife J, Zaitsev AV, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation. 2003;108:668-71.
- 47. Krummen DE, Peng KA, Bullinga JR, et al. Centrifugal gradients of rate and organization in human atrial fibrillation. Pacing Clin Electrophysiol. 2009;32:1366-78.
- 48. Narayan SM, Krummen DE, Shivkumar K, et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol. 2012;60:628-36.
- 49. Sahadevan J, Ryu K, Peltz L, et al. Epicardial mapping of chronic atrial fibrillation in patients: preliminary observations. Circulation. 2004;110:3293-9.
- 50. Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation. 2005;112:789-97.
- 51. Voigt N, Trausch A, Knaut M, et al. Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:472-80.
- 52. Lazar S, Dixit S, Marchlinski FE, et al. Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans. Circulation. 2004;110:3181-6.
- 53. Ausma J, Wijffels M, Thone F, et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation. 1997;96:3157-63.
- 54. Ausma J, Wijffels M, van EG, et al. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol. 1997;151:985-97.
- 55. Kato T, Iwasaki YK, Nattel S. Connexins and atrial fibrillation: filling in the gaps. Circulation. 2012;125:203-6.

- 56. Bailey GW, Braniff BA, Hancock EW, et al. Relation of left atrial pathology to atrial fibrillation in mitral valvular disease. Ann Intern Med. 1968;69:13-20.
- 57. Boldt A, Wetzel U, Lauschke J, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart. 2004;90:400-5.
- 58. Frustaci A, Caldarulo M, Buffon A, et al. Cardiac biopsy in patients with "primary" atrial fibrillation. Histologic evidence of occult myocardial diseases. Chest. 1991;100:303-6.
- 59. Frustaci A, Chimenti C, Bellocci F, et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997;96:1180-4.
- 60. Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res. 2002;54:361-79.
- 61. Polontchouk L, Haefliger JA, Ebelt B, et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol. 2001;38:883-91.
- 62. Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation. 2004;109:363-8.
- 63. Anyukhovsky EP, Sosunov EA, Plotnikov A, et al. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res. 2002;54:462-9.
- 64. Burstein B, Qi XY, Yeh YH, et al. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc Res. 2007;76:442-52.
- 65. Cardin S, Libby E, Pelletier P, et al. Contrasting gene expression profiles in two canine models of atrial fibrillation. Circ Res. 2007;100:425-33.
- 66. Chen CL, Huang SK, Lin JL, et al. Upregulation of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases in rapid atrial pacing-induced atrial fibrillation. J Mol Cell Cardiol. 2008;45:742-53.
- 67. Everett TH, Wilson EE, Verheule S, et al. Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. Am J Physiol Heart Circ Physiol. 2006;291:H2911-H2923.
- 68. Hanna N, Cardin S, Leung TK, et al. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res. 2004;63:236-44.
- 69. Li D, Fareh S, Leung TK, et al. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100:87-95.
- 70. Pan CH, Lin JL, Lai LP, et al. Downregulation of angiotensin converting enzyme II is associated with pacing-induced sustained atrial fibrillation. FEBS Lett. 2007;581:526-34.
- 71. Barth AS, Merk S, Arnoldi E, et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ Res. 2005;96:1022-9.
- 72. Boldt A, Wetzel U, Weigl J, et al. Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. J Am Coll Cardiol. 2003;42:1785-92.
- 73. Ohtani K, Yutani C, Nagata S, et al. High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol. 1995:25:1162-9.
- 74. Dickfeld T, Kato R, Zviman M, et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2006;47:370-8.
- 75. McGann CJ, Kholmovski EG, Oakes RS, et al. New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J Am Coll Cardiol. 2008;52:1263-71.
- 76. Akoum N, McGann C, Vergara G, et al. Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J Cardiovasc Electrophysiol. 2012;23:44-50.
- 77. Daccarett M, Badger TJ, Akoum N, et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 2011;57:831-8.
- 78. Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119:1758-67.
- 79. Peters DC, Wylie JV, Hauser TH, et al. Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology. 2007;243:690-5.
- 80. Carnes CA, Chung MK, Nakayama T, et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89:E32-E38.
- 81. Dudley SC, Jr., Hoch NE, McCann LA, et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation. 2005;112:1266-73.
- 82. Rudolph V, Andrie RP, Rudolph TK, et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med. 2010;16:470-4.

- 83. Savelieva I, Kakouros N, Kourliouros A, et al. Upstream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention. Europace. 2011;13:308-28.
- 84. Aviles RJ, Martin DO, Apperson-Hansen C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006-10.
- 85. Bruins P, te VH, Yazdanbakhsh AP, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96:3542-8.
- 86. Chung MK, Martin DO, Sprecher D, et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104:2886-91.
- 87. Liu T, Li G, Li L, et al. Association between C-reactive protein and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. J Am Coll Cardiol. 2007;49:1642-8.
- 88. Mihm MJ, Yu F, Carnes CA, et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation. 2001;104:174-80.
- 89. Goldstein RN, Ryu K, Khrestian C, et al. Prednisone prevents inducible atrial flutter in the canine sterile pericarditis model. J Cardiovasc Electrophysiol. 2008;19:74-81.
- 90. Ishii Y, Schuessler RB, Gaynor SL, et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation. 2005;111:2881-8.
- 91. Shiroshita-Takeshita A, Brundel BJ, Lavoie J, et al. Prednisone prevents atrial fibrillation promotion by atrial tachycardia remodeling in dogs. Cardiovasc Res. 2006;69:865-75.
- 92. Kumagai K, Nakashima H, Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc Res. 2004;62:105-11.
- 93. Shiroshita-Takeshita A, Brundel BJ, Burstein B, et al. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res. 2007;74:75-84.
- 94. Shiroshita-Takeshita A, Schram G, Lavoie J, et al. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation. 2004;110:2313-9.
- 95. da Cunha DN, Hamlin RL, Billman GE, et al. n-3 (omega-3) polyunsaturated fatty acids prevent acute atrial electrophysiological remodeling. Br J Pharmacol. 2007;150:281-5.
- 96. Den Ruijter HM, Berecki G, Verkerk AO, et al. Acute administration of fish oil inhibits triggered activity in isolated myocytes from rabbits and patients with heart failure. Circulation. 2008;117:536-44.
- 97. Mayyas F, Sakurai S, Ram R, et al. Dietary omega3 fatty acids modulate the substrate for post-operative atrial fibrillation in a canine cardiac surgery model. Cardiovasc Res. 2011;89:852-61.
- 98. Ramadeen A, Laurent G, dos Santos CC, et al. n-3 Polyunsaturated fatty acids alter expression of fibrotic and hypertrophic genes in a dog model of atrial cardiomyopathy. Heart Rhythm. 2010;7:520-8.
- 99. Sakabe M, Shiroshita-Takeshita A, Maguy A, et al. Omega-3 polyunsaturated fatty acids prevent atrial fibrillation associated with heart failure but not atrial tachycardia remodeling. Circulation. 2007;116:2101-9.
- 100. Sarrazin JF, Comeau G, Daleau P, et al. Reduced incidence of vagally induced atrial fibrillation and expression levels of connexins by n-3 polyunsaturated fatty acids in dogs. J Am Coll Cardiol. 2007;50:1505-12.
- 101. Li GR, Sun HY, Zhang XH, et al. Omega-3 polyunsaturated fatty acids inhibit transient outward and ultra-rapid delayed rectifier K+currents and Na+current in human atrial myocytes. Cardiovasc Res. 2009;81:286-93.
- 102. Mozaffarian D, Psaty BM, Rimm EB, et al. Fish intake and risk of incident atrial fibrillation. Circulation. 2004;110:368-73.
- 103. Virtanen JK, Mursu J, Voutilainen S, et al. Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation. 2009;120:2315-21.
- 104. Cardin S, Li D, Thorin-Trescases N, et al. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res. 2003;60:315-25.
- 105. Chen YJ, Chen YC, Tai CT, et al. Angiotensin II and angiotensin II receptor blocker modulate the arrhythmogenic activity of pulmonary veins. Br J Pharmacol. 2006;147:12-22.
- 106. Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur Heart J. 2006;27:512-8.
- 107. Inoue N, Ohkusa T, Nao T, et al. Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist. J Am Coll Cardiol. 2004;44:914-22.
- 108. Kumagai K, Nakashima H, Urata H, et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 2003;41:2197-204.
- 109. Li D, Shinagawa K, Pang L, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 2001;104:2608-14.

- 110. Moreno I, Caballero R, Gonzalez T, et al. Effects of irbesartan on cloned potassium channels involved in human cardiac repolarization. J Pharmacol Exp Ther. 2003;304:862-73.
- 111. Nakashima H, Kumagai K, Urata H, et al. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation. 2000;101:2612-7.
- 112. Saygili E, Rana OR, Saygili E, et al. Losartan prevents stretch-induced electrical remodeling in cultured atrial neonatal myocytes. Am J Physiol Heart Circ Physiol. 2007;292:H2898-H2905.
- 113. Shinagawa K, Mitamura H, Ogawa S, et al. Effects of inhibiting Na(+)/H(+)-exchange or angiotensin converting enzyme on atrial tachycardia-induced remodeling. Cardiovasc Res. 2002;54:438-46.
- 114. Xiao HD, Fuchs S, Campbell DJ, et al. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol. 2004;165:1019-32.
- 115. Goette A, Arndt M, Rocken C, et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation. 2000;101:2678-81.
- 116. Goette A, Staack T, Rocken C, et al. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol. 2000;35:1669-77.
- 117. Milliez P, Deangelis N, Rucker-Martin C, et al. Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. Eur Heart J. 2005;26:2193-9.
- 118. Shroff SC, Ryu K, Martovitz NL, et al. Selective aldosterone blockade suppresses atrial tachyarrhythmias in heart failure. J Cardiovasc Electrophysiol. 2006;17:534-41.
- 119. Goette A, Hoffmanns P, Enayati W, et al. Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. Am J Cardiol. 2001;88:906-9, A8.
- 120. Milliez P, Girerd X, Plouin PF, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243-8.
- 121. Ram R, Van Wagoner DR. Aldosterone antagonism as an antiarrhythmic approach for atrial arrhythmias in heart failure. J Cardiovasc Electrophysiol. 2006;17:542-3.
- 122. Nakajima H, Nakajima HO, Salcher O, et al. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res. 2000;86:571-9.
- 123. Verheule S, Sato T, Everett T, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res. 2004;94:1458-65.
- 124. Hoff HE, Geddes LA, MCCRADY JD. THE MAINTENANCE OF EXPERIMENTAL ATRIAL FIBRILLATION BY CHOLINERGIC FACTORS. Cardiovasc Res Cent Bull. 1965;49:117-29.
- 125. Po SS, Scherlag BJ, Yamanashi WS, et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm. 2006;3:201-8.
- 126. Scherlag BJ, Yamanashi W, Patel U, et al. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45:1878-86.
- 127. Coumel P, Attuel P, Lavallee J, et al. [The atrial arrhythmia syndrome of vagal origin]. Arch Mal Coeur Vaiss. 1978;71:645-56.
- 128. Pappone C, Santinelli V, Manguso F, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004;109:327-34.
- 129. Scanavacca M, Pisani CF, Hachul D, et al. Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. Circulation. 2006;114:876-85.
- 130. Ausma J, van der Velden HM, Lenders MH, et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation. 2003;107:2051-8.
- 131. Dobrev D, Carlsson L, Nattel S. Novel molecular targets for atrial fibrillation therapy. Nat Rev Drug Discov. 2012;11:275-91.
- 132. Everett TH, Li H, Mangrum JM, et al. Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation. 2000;102:1454-60.
- 133. Fuster V, Ryden LE, Cannom DS, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2011;57:e101-e198.
- 134. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1:62-73.
- 135. Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954-68.
- 136. Yue L, Feng J, Gaspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997;81:512-25.

- 137. Franz MR, Karasik PL, Li C, et al. Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter. J Am Coll Cardiol. 1997;30:1785-92.
- 138. Yu WC, Lee SH, Tai CT, et al. Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovasc Res. 1999;42:470-6.
- 139. Chang CM, Wu TJ, Zhou S, et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation. 2001;103:22-5.
- 140. Goette A, Honeycutt C, Langberg JJ. Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation. 1996;94:2968-74.
- 141. Jayachandran JV, Sih HJ, Winkle W, et al. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation. 2000;101:1185-91.
- 142. Shinagawa K, Derakhchan K, Nattel S. Pharmacological prevention of atrial tachycardia induced atrial remodeling as a potential therapeutic strategy. Pacing Clin Electrophysiol. 2003;26:752-64.
- 143. Nattel S, Dobrev D. The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur Heart J. 2012;33:1870-7.
- 144. Sun H, Gaspo R, Leblanc N, et al. Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation. 1998;98:719-27.
- 145. Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005;111:2025-32.
- 146. Hove-Madsen L, Llach A, Bayes-Genis A, et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004;110:1358-63.
- 147. Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134-44.
- 148. Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125:2059-70.
- 149. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139-51.
- 150. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883-91.
- 151. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981-92.
- 152. Connolly SJ, Eikelboom J, Joyner C, et al. Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364:806-17.
- 153. Aguilar MI, Hart R. Oral anticoagulants for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2005;CD001927.
- 154. Aguilar MI, Hart R, Pearce LA. Oral anticoagulants versus antiplatelet therapy for preventing stroke in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2007;CD006186.
- 155. Saxena R, Koudstall P. Anticoagulants versus antiplatelet therapy for preventing stroke in patients with nonrheumatic atrial fibrillation and a history of stroke or transient ischemic attack. The Cochrane Library. 2004;
- 156. Mant J, Hobbs FD, Fletcher K, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet. 2007;370:493-503.
- 157. Abrams J, Allen J, Allin D, et al. Efficacy and safety of esmolol vs propranolol in the treatment of supraventricular tachyarrhythmias: a multicenter double-blind clinical trial. Am Heart J. 1985;110:913-22.
- 158. Farshi R, Kistner D, Sarma JS, et al. Ventricular rate control in chronic atrial fibrillation during daily activity and programmed exercise: a crossover open-label study of five drug regimens. J Am Coll Cardiol. 1999;33:304-10.
- 159. Ellenbogen KA, Dias VC, Plumb VJ, et al. A placebo-controlled trial of continuous intravenous diltiazem infusion for 24-hour heart rate control during atrial fibrillation and atrial flutter: a multicenter study. J Am Coll Cardiol. 1991;18:891-7.
- 160. Steinberg JS, Katz RJ, Bren GB, et al. Efficacy of oral diltiazem to control ventricular response in chronic atrial fibrillation at rest and during exercise. J Am Coll Cardiol. 1987;9:405-11.
- 161. Siu CW, Lau CP, Lee WL, et al. Intravenous diltiazem is superior to intravenous amiodarone or digoxin for achieving ventricular rate control in patients with acute uncomplicated atrial fibrillation. Crit Care Med. 2009;37:2174-9.
- 162. Intravenous digoxin in acute atrial fibrillation. Results of a randomized, placebo-controlled multicentre trial in 239 patients. The Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Eur Heart J. 1997;18:649-54.
- 163. Olshansky B, Rosenfeld LE, Warner AL, et al. The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study: approaches to control rate in atrial fibrillation. J Am Coll Cardiol. 2004;43:1201-8.
- 164. Delle KG, Geppert A, Neunteufl T, et al. Amiodarone versus diltiazem for rate control in critically ill patients with atrial tachyarrhythmias. Crit Care Med. 2001;29:1149-53.

- 165. Connolly SJ, Camm AJ, Halperin JL, et al. Dronedarone in high-risk permanent atrial fibrillation. N Engl J Med. 2011;365:2268-76.
- 166. Ozcan C, Jahangir A, Friedman PA, et al. Long-term survival after ablation of the atrioventricular node and implantation of a permanent pacemaker in patients with atrial fibrillation. N Engl J Med. 2001;344:1043-51.
- 167. Van Gelder IC, Groenveld HF, Crijns HJ, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010;362:1363-73.
- 168. Singh BN, Connolly SJ, Crijns HJ, et al. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N Engl J Med. 2007;357:987-99.
- 169. Maintenance of sinus rhythm in patients with atrial fibrillation: an AFFIRM substudy of the first antiarrhythmic drug. J Am Coll Cardiol. 2003;42:20-9.
- 170. Aliot E, Denjoy I. Comparison of the safety and efficacy of flecainide versus propafenone in hospital out-patients with symptomatic paroxysmal atrial fibrillation/flutter. The Flecainide AF French Study Group. Am J Cardiol. 1996;77:66A-71A.
- 171. Kober L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358:2678-87.
- 172. Page RL, Tilsch TW, Connolly SJ, et al. Asymptomatic or "silent" atrial fibrillation: frequency in untreated patients and patients receiving azimilide. Circulation. 2003;107:1141-5.
- 173. Hohnloser SH, Crijns HJ, van EM, et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N Engl J Med. 2009;360:668-78.
- 174. Bellandi F, Simonetti I, Leoncini M, et al. Long-term efficacy and safety of propafenone and sotalol for the maintenance of sinus rhythm after conversion of recurrent symptomatic atrial fibrillation. Am J Cardiol. 2001;88:640-5.
- 175. Benditt DG, Williams JH, Jin J, et al. Maintenance of sinus rhythm with oral d,l-sotalol therapy in patients with symptomatic atrial fibrillation and/or atrial flutter. d,l-Sotalol Atrial Fibrillation/Flutter Study Group. Am J Cardiol. 1999;84:270-7.
- 176. Byrne-Quinn E, Wing AJ. Maintenance of sinus rhythm after DC reversion of atrial fibrilllation. A double-blind controlled trial of long-acting quinidine bisulphate. Br Heart J. 1970;32:370-6.
- 177. Carunchio A, Fera MS, Mazza A, et al. [A comparison between flecainide and sotalol in the prevention of recurrences of paroxysmal atrial fibrillation]. G Ital Cardiol. 1995;25:51-68.
- 178. Channer KS, Birchall A, Steeds RP, et al. A randomized placebo-controlled trial of pre-treatment and short- or long-term maintenance therapy with amiodarone supporting DC cardioversion for persistent atrial fibrillation. Eur Heart J. 2004;25:144-50.
- 179. Roy D, Talajic M, Dorian P, et al. Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med. 2000;342:913-20.
- 180. Touboul P, Brugada J, Capucci A, et al. Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur Heart J. 2003;24:1481-7.
- 181. Pedersen OD, Bagger H, Keller N, et al. Efficacy of dofetilide in the treatment of atrial fibrillation-flutter in patients with reduced left ventricular function: a Danish investigations of arrhythmia and mortality on dofetilide (diamond) substudy. Circulation. 2001;104:292-6.
- 182. Le Heuzey JY, De Ferrari GM, Radzik D, et al. A short-term, randomized, double-blind, parallel-group study to evaluate the efficacy and safety of dronedarone versus amiodarone in patients with persistent atrial fibrillation: the DIONYSOS study. J Cardiovasc Electrophysiol. 2010;21:597-605.
- 183. Dogan A, Ergene O, Nazli C, et al. Efficacy of propafenone for maintaining sinus rhythm in patients with recent onset or persistent atrial fibrillation after conversion: a randomized, placebo-controlled study. Acta Cardiol. 2004;59:255-61.
- 184. Chimienti M, Cullen MT, Jr., Casadei G. Safety of long-term flecainide and propafenone in the management of patients with symptomatic paroxysmal atrial fibrillation: report from the Flecainide and Propafenone Italian Study Investigators. Am J Cardiol. 1996;77:60A-75A.
- 185. Galperin J, Elizari MV, Chiale PA, et al. Efficacy of amiodarone for the termination of chronic atrial fibrillation and maintenance of normal sinus rhythm: a prospective, multicenter, randomized, controlled, double blind trial. J Cardiovasc Pharmacol Ther. 2001;6:341-50.
- 186. Kalusche D, Stockinger J, Betz P, et al. [Sotalol and quinidine/verapamil (Cordichin) in chronic atrial fibrillation--conversion and 12-month follow-up--a randomized comparison]. Z Kardiol. 1994;83 Suppl 5:109-16.
- 187. Kochiadakis GE, Igoumenidis NE, Hamilos ME, et al. Sotalol versus propafenone for long-term maintenance of normal sinus rhythm in patients with recurrent symptomatic atrial fibrillation. Am J Cardiol. 2004;94:1563-6.
- 188. Kuhlkamp V, Schirdewan A, Stangl K, et al. Use of metoprolol CR/XL to maintain sinus rhythm after conversion from persistent atrial fibrillation: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2000;36:139-46.
- 189. Naccarelli GV, Dorian P, Hohnloser SH, et al. Prospective comparison of flecainide versus quinidine for the treatment of paroxysmal atrial fibrillation/flutter. The Flecainide Multicenter Atrial Fibrillation Study Group. Am J Cardiol. 1996;77:53A-9A.

- 190. Fetsch T, Bauer P, Engberding R, et al. Prevention of atrial fibrillation after cardioversion: results of the PAFAC trial. Eur Heart J. 2004;25:1385-94.
- 191. Piccini JP, Hasselblad V, Peterson ED, et al. Comparative efficacy of dronedarone and amiodarone for the maintenance of sinus rhythm in patients with atrial fibrillation. J Am Coll Cardiol. 2009;54:1089-95.
- 192. Plewan A, Lehmann G, Ndrepepa G, et al. Maintenance of sinus rhythm after electrical cardioversion of persistent atrial fibrillation; sotalol vs bisoprolol. Eur Heart J. 2001;22:1504-10.
- 193. Crijns HJ, Gosselink AT, Lie KI. Propafenone versus disopyramide for maintenance of sinus rhythm after electrical cardioversion of chronic atrial fibrillation: a randomized, double-blind study. PRODIS Study Group. Cardiovasc Drugs Ther. 1996;10:145-52.
- 194. Pritchett EL, Page RL, Carlson M, et al. Efficacy and safety of sustained-release propafenone (propafenone SR) for patients with atrial fibrillation. Am J Cardiol. 2003;92:941-6.
- 195. Reimold SC, Cantillon CO, Friedman PL, et al. Propafenone versus sotalol for suppression of recurrent symptomatic atrial fibrillation. Am J Cardiol. 1993;71:558-63.
- 196. Richiardi E, Gaita F, Greco C, et al. [Propafenone versus hydroquinidine in long-term pharmacological prophylaxis of atrial fibrillation]. Cardiologia. 1992;37:123-7.
- 197. Singh BN, Singh SN, Reda DJ, et al. Amiodarone versus sotalol for atrial fibrillation. N Engl J Med. 2005;352:1861-72.
- 198. Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: the symptomatic atrial fibrillation investigative research on dofetilide (SAFIRE-D) study. Circulation. 2000;102:2385-90.
- 199. Patten M, Maas R, Bauer P, et al. Suppression of paroxysmal atrial tachyarrhythmias--results of the SOPAT trial. Eur Heart J. 2004;25:1395-404.
- 200. Stroobandt R, Stiels B, Hoebrechts R. Propafenone for conversion and prophylaxis of atrial fibrillation. Propafenone Atrial Fibrillation Trial Investigators. Am J Cardiol. 1997;79:418-23.
- 201. Pritchett EL, Page RL, Connolly SJ, et al. Antiarrhythmic effects of azimilide in atrial fibrillation: efficacy and doseresponse. Azimilide Supraventricular Arrhythmia Program 3 (SVA-3) Investigators. J Am Coll Cardiol. 2000;36:794-802.
- 202. Villani R, Zoletti F, Veniani M, et al. [A comparison between amiodarone and disopyramide in a delayed-release formulation in the prevention of recurrences of symptomatic atrial fibrillation]. Clin Ter. 1992;140:35-9.
- 203. Chung MK, Schweikert RA, Wilkoff BL, et al. Is hospital admission for initiation of antiarrhythmic therapy with sotalol for atrial arrhythmias required? Yield of in-hospital monitoring and prediction of risk for significant arrhythmia complications. J Am Coll Cardiol. 1998;32:169-76.
- 204. Zimetbaum PJ, Schreckengost VE, Cohen DJ, et al. Evaluation of outpatient initiation of antiarrhythmic drug therapy in patients reverting to sinus rhythm after an episode of atrial fibrillation. Am J Cardiol. 1999;83:450-2, A9.
- 205. Hauser TH, Pinto DS, Josephson ME, et al. Safety and feasibility of a clinical pathway for the outpatient initiation of antiarrhythmic medications in patients with atrial fibrillation or atrial flutter. Am J Cardiol. 2003;91:1437-41.
- 206. Goette A, Schon N, Kirchhof P, et al. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. Circ Arrhythm Electrophysiol. 2012;5:43-51.
- 207. Disertori M, Lombardi F, Barlera S, et al. Clinical predictors of atrial fibrillation recurrence in the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation (GISSI-AF) trial. Am Heart J. 2010;159:857-63.
- 208. Healey JS, Baranchuk A, Crystal E, et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol. 2005;45:1832-9.
- 209. Yamashita T, Inoue H, Okumura K, et al. Randomized trial of angiotensin II-receptor blocker vs. dihydropiridine calcium channel blocker in the treatment of paroxysmal atrial fibrillation with hypertension (J-RHYTHM II study). Europace. 2011;13:473-9.
- 210. Schneider MP, Hua TA, Bohm M, et al. Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol. 2010;55:2299-307.
- 211. Krittayaphong R, Raungrattanaamporn O, Bhuripanyo K, et al. A randomized clinical trial of the efficacy of radiofrequency catheter ablation and amiodarone in the treatment of symptomatic atrial fibrillation. J Med Assoc Thai. 2003;86 Suppl 1:S8-16.
- 212. Wazni OM, Marrouche NF, Martin DO, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA. 2005;293:2634-40.
- 213. Stabile G, Bertaglia E, Senatore G, et al. Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (Catheter Ablation For The Cure Of Atrial Fibrillation Study). Eur Heart J. 2006;27:216-21.
- 214. Oral H, Chugh A, Ozaydin M, et al. Risk of thromboembolic events after percutaneous left atrial radiofrequency ablation of atrial fibrillation. Circulation. 2006;114:759-65.
- 215. Jais P, Cauchemez B, Macle L, et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation. 2008;118:2498-505.

- 216. Forleo GB, Tondo C. Atrial fibrillation: cure or treat? Ther Adv Cardiovasc Dis. 2009;3:187-96.
- 217. Wilber DJ, Pappone C, Neuzil P, et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;303:333-40.
- 218. Packer DL, Kowal RC, Wheelan KR, et al. Cryoballoon Ablation of Pulmonary Veins for Paroxysmal Atrial Fibrillation: First Results of the North American Arctic Front (STOP AF) Pivotal Trial. J Am Coll Cardiol. 2013;61:1713-23.
- 219. Morillo C, Verma A, Kuck K, et al. Radiofrequency Ablation vs Antiarrhythmic Drugs as First-Line Treatment of Symptomatic Atrial Fibrillation: (RAAFT 2): A randomized trial. (IN PRESS). Heart Rhythm. 2013.
- 220. Cosedis NJ, Johannessen A, Raatikainen P, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012;367:1587-95.
- 221. Bonanno C, Paccanaro M, La VL, et al. Efficacy and safety of catheter ablation versus antiarrhythmic drugs for atrial fibrillation: a meta-analysis of randomized trials. J Cardiovasc Med (Hagerstown). 2010;11:408-18.
- 222. Calkins H, Reynolds MR, Spector P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ Arrhythm Electrophysiol. 2009;2:349-61.
- 223. Parkash R, Tang AS, Sapp JL, et al. Approach to the catheter ablation technique of paroxysmal and persistent atrial fibrillation: a meta-analysis of the randomized controlled trials. J Cardiovasc Electrophysiol. 2011;22:729-38.
- 224. Piccini JP, Lopes RD, Kong MH, et al. Pulmonary vein isolation for the maintenance of sinus rhythm in patients with atrial fibrillation: a meta-analysis of randomized, controlled trials. Circ Arrhythm Electrophysiol. 2009;2:626-33.
- 225. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med. 2008;358:2667-77.
- 226. Gaita F, Di DP, Olivotto I, et al. Usefulness and safety of transcatheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2007;99:1575-81.
- 227. Kilicaslan F, Verma A, Saad E, et al. Efficacy of catheter ablation of atrial fibrillation in patients with hypertrophic obstructive cardiomyopathy. Heart Rhythm. 2006;3:275-80.
- 228. Bunch TJ, Munger TM, Friedman PA, et al. Substrate and procedural predictors of outcomes after catheter ablation for atrial fibrillation in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2008;19:1009-14.
- 229. Di DP, Olivotto I, Delcre SD, et al. Efficacy of catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: impact of age, atrial remodelling, and disease progression. Europace. 2010;12:347-55.